• Title/Summary/Keyword: road vehicle radar

Search Result 45, Processing Time 0.022 seconds

Side Looking Vehicle Detection Radar Using A Novel Signal Processing Algorithm (새로운 신호처리 알고리즘을 이용한 측방설치 차량감지용 레이다)

  • Kang Sung Min;Kim Tae Young;Choi Jae Hong;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.1-7
    • /
    • 2004
  • We have developed a 24GHz side-looking vehicle detection radar. A 24GHz front-end module and a novel signal processing algorithm have been developed for speed measurement and size classification of vehicles in multiple lanes. The system has a fixed antenna and FMCW processing module. This paper presents the background theory of operation and shows some measured data using the algorithm. The data shows that measured velocity of the passing vehicle is within the accuracy of 95% in single lane and the velocity of the vehicles in two lanes is within the accuracy of 90% by using variable threshold estimation. The classification of vehicle size as small, medium and large has been measured with 89% accuracy.

Strategy for V2E Performance Assurance Technology Development Using the Kano Model (Kano 모델을 활용한 V2E 성능확보기술 개발 전략)

  • Jang, Jeong Ah;Son, Sungho;Lee, Jung Ki
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Automated vehicles (AVs) are coming to our roadways. In practice, there are still several challenges that can impede the AV sensors are polluted on various road conditions. In this paper, we propose a strategy for V2E performance assurance technology using Kano model. We are developing the vehicle sensor cleaning system about the three types of commonly used sensors: camera, radar, and LiDAR. Surveys were carried out in 30 AV's experts on quality characteristics about V2E performance assurance technology. As a result, the Kano model developed to verify a major requirement of autonomous vehicle's sensor cleaning system. It is expected that the Kano model will be actively used to verify the importance of V2E development strategy.

Analysis for the Dynamic Characteristics of the Moving Equipment for the large Radar Transportation (대형 레이더 수송용 이동치구의 주행동특성 분석)

  • Jeon, Jong-Ik;Lee, Jong-Hak;Kang, Young-Sik;Choi, Ji-Ho;Kang, Dong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.416-421
    • /
    • 2013
  • In this paper, the design concept of the transport of defense equipment and processes were established. And the transport of large radar equipment design were investigated. Detailed design of moving equipment with reference to the U.S. military standard was performed.Damping system of the moving equipment by using a simulation designed to predict In order to minimize shock and vibration in the vehicle due to the irregular road surface is transmitted through. Analysis of the damping system was verified using the driving test.

  • PDF

A Study on Safety Evaluation Method of LKAS in Actual Road (LKAS의 실도로 안전성 평가방법에 관한 연구)

  • Yoon, PilHwan;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2018
  • Recently, the automobile industry has developed ADAS (Advanced Driver Assistance System) to prevent traffic accidents and reduce driver's driving burden. Among the ADAS, the LKAS (Lane Keeping Assistance System) is a support system for the convenience and safety of the driver, and the main function is to maintain the driving lane of the vehicle. LKAS is a system that uses radar sensor and camera sensor to collect information about the position of the vehicle in the lane and to support keeping the lane through control if necessary. In many countries, LKAS has already been commercialized and the convenience and safety of drivers have been improved. The international LKAS evaluation test procedure is being developed and discussed by standardization committees such as the ISO (International Organization for Standardization) and the Euro NCAP (New Car Assessment Program). In Korean, the LKAS test method is specified in the KNCAP (Korean New Car Assessment Program), but the evaluation method is not defined. Therefore, the LKAS test procedure that meets international standards and is suitable for domestic road environment is necessary. In this paper, development of LKAS test evaluation scenarios that meets international standards and considering domestic road environment, and the formula that can evaluate the result value after control as the relative distance of lane and the front wheel are suggested. And a comparative analysis was conducted to verify the validity of the suggested scenario and formula. The test evaluation was conducted using the vehicle equipped with the LKAS.

MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle (MCMC 기반 파티클 필터를 이용한 지능형 자동차의 다수 전방 차량 추적 시스템)

  • Choi, Baehoon;An, Jhonghyun;Cho, Minho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.186-190
    • /
    • 2015
  • Intelligent vehicle plans motion and navigate itself based on the surrounding environment perception. Hence, the precise environment recognition is an essential part of self-driving vehicle. There exist many vulnerable road users (e.g. vehicle, pedestrians) on vehicular driving environment, the vehicle must percept all the dynamic obstacles accurately for safety. In this paper, we propose an multiple vehicle tracking algorithm using microwave radar. Our proposed system includes various special features. First, exceptional radar measurement model for vehicle, concentrated on the corner, is described by mixture density network (MDN), and applied to particle filter weighting. Also, to conquer the curse of dimensionality of particle filter and estimate the time-varying number of multi-target states, reversible jump markov chain monte carlo (RJMCMC) is used to sampling step of the proposed algorithm. The robustness of the proposed algorithm is demonstrated through several computer simulations.

Moving Window Technique for Obstacle Detection Using Neural Networks (신경망을 사용한 장애물 검출을 위한 Moving Window 기법)

  • 주재율;회승욱;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.164-164
    • /
    • 2000
  • This paper proposes a moving window technique that extracts lanes and vehicles using the images captured by a CCD camera equipped inside an automobile in real time. For the purpose, first of all the optimal size of moving window is determined based upon speed of the vehicle, road curvature, and camera parameters. Within the moving windows that are dynamically changing, lanes and vehicles are extracted, and the vehicles within the driving lanes are classified as obstacles. Assuming highway driving, there are two sorts of image-objects within the driving lanes: one is ground mark to show the limit speed or some information for driving, and the other is the vehicle as an obstacle. Using characteristics of three-dimension objects, a neural network can be trained to distinguish the vehicle from ground mark. When it is recognized as an obstacle, the distance from the camera to the front vehicle can be calculated with the aids of database that keeps the models of automobiles on the highway. The correctness of this measurement is verified through the experiments comparing with the radar and laser sensor data.

  • PDF

On-road Vehicle Tracking using Laser Scanner with Multiple Hypothesis Assumption

  • Ryu, Kyung-Jin;Park, Seong-Keun;Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • Active safety vehicle devices are getting more attention recently. To prevent traffic accidents, the environment in front and even around the vehicle must be checked and monitored. In the present applications, mainly camera and radar based systems are used as sensing devices. Laser scanner, one of the sensing devices, has the advantage of obtaining accurate measurement of the distance and the geometric information about the objects in the field of view of the laser scanner. However, there is a problem that detecting object occluded by a foreground one is difficult. In this paper, criterions are proposed to manage this problem. Simulation is conducted by vehicle mounted the laser scanner and multiple-hypothesis algorithm tracks the candidate objects. We compare the running times as multi-hypothesis algorithm parameter varies.

DEVELOPMENT OF ROBUST LATERAL COLLISION RISK ASSESSMENT METHOD (측후방 충돌 안전 시스템을 위한 횡방향 충돌 위험 평가 지수 개발)

  • Kim, Kyuwon;Kim, Beomjun;Kim, Dongwook;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • This paper presents a lateral collision risk index between an ego vehicle and a rear-side vehicle. The lateral collision risk is designed to represent a lateral collision risk and provide the appropriate threshold value of activation of the lateral collision management system such as the Blind Spot Detection(BSD). The lateral collision risk index is designed using the Time to Line Crossing(TLC) and the longitudinal collision index at the predicted TLC. TLC and the longitudinal collision index are calculated with the signals from the exterior sensor such as the radar equipped on the rear-side of a vehicle and a vision sensor which detects the distance and time to the lane departure. For the robust situation assessment, the perception of driving environment determining whether the road is straighten or curved should be determined. The relative motion estimation method has been proposed with the road information via the integrated estimator using the environment sensors and vehicle sensor. A lateral collision risk index was composed with the estimated relative motion considering the relative yaw angle. The performance of the proposed lateral collision risk index is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

A Study on Near Cut-In Performance Comparison on Adaptive Cruise Control Stop&Go (ACC Stop&Go 시스템의 근접 Cut-In 성능 비교에 대한 연구)

  • Lee, Dong-Han;Cho, Cheol-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Adaptive cruise control Stop&Go system has been developed to reduce the driver's workload on highway or public road. This system is characterized by a moderate control of engine and brake actuator. A control system capable of modeling driver's driving characteristics has been constructed to provide natural vehicle behavior in full speed driving. But, ACC Stop&Go system has some limitations. One of the limitations is a detection limitation on near cut-in situation. This paper presents development of the near cut-in test procedure, finding of the limitation value on near cut-in scenario and performance comparisons on ACC Stop&Go system.

Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section (차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발)

  • Seo, Hotae;Park, Sungyoul;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.