• Title/Summary/Keyword: road vehicle

Search Result 2,531, Processing Time 0.033 seconds

The Experimental Study on the Correlation of the Interior Noise of a Driving Vehicle with Lateral Dynamic Stiffness of the Wheel (주행 중 실내소음과 Wheel의 Lateral Dynamic Stiffness와의 상관관계에 대한 시험적 연구)

  • Kim, Byung-Jin;Sa, Jung-Hwan;Park, Jin-Sung;Park, Hyun-Woo;Cho, Seong-Keun;Jeong, Heon Sul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • Nowadays, among several reasons for customers to choose their own cars, NVH performance plays much important role. The concern for the car interior noise is increasing recently, because electric cars and hybrid cars generate less engine noise which was the main noise of traditional cars. According to oversea references, high Lateral Dynamic Stiffness (LDS) of vehicle wheels is described to reduce Structure Bone Noise (SBN) which is being generated while driving cars. However availablet test standards and test results are not enough, in this study the interior noise has been measured after attaching a same tyre to several wheels which has different Lateral Dynamic Stiffness. The test has verified that the interior noise differs depending on Lateral Dynamic Stiffness of wheels. As to this, the reduction of the interior noise can be possible with the optimal design of the wheel.

A Study on Crash Analysis of Vehicle and Guardrail using a LS-DYNA Program (LS-DYNA 프로그램을 이용한 차량과 가드레일의 충돌해석에 관한 연구)

  • Kwon, O-Hyun;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2016
  • A study is to research crash barriers for vehicles that prevent road breakaway of vehicles and protect car passengers and pedestrians as absorbing impulse. Protection performance tests on vehicle passengers were simulated by using a LS-DYNA program. Through repetitive simulation on various speed and angles, passenger protection performance according to different impact condition was contemplated. Variable setting for the simulation was calculated as the mean weight of domestic car sales. By analyzing NASS (National Automotive Sampling System) of NHTSA (National Highway Traffic Safety Administration) of the U.S., the actual speed and collision angle section of accidents were computed. As a result, we confirmed that THIV (Theoretical Head Impact Velocity) and PHD (Post-impact Head Deceleration) are increased according to the impact speed and angle. Also, when the vehicle hit the guardrail post, we could be confirmed that the passenger protection performance greatly decreased.

Dynamic Characteristics of Buried Pipeline under Vibration Velocity of Vehicle Loads (도로 하부 통과 배관의 주행 하중 속도에 따른 진동 특성)

  • Won, Jong-Hwa;Sun, Jin-Sun;Yoo, Han-Kyu;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Vibration velocity induced by earthquakes or external vibration sources is one of the integrity assessment indexes, and is also a representative value used to describe the amount of vibration because it is based on a proportional relationship with the damage scale. In this study, the vibration velocity criterion for structures is first examined. Then, based on the velocity criterion, an integrity assessment is performed. Burial condition is set up based on the "Highway and Local Road Design Criteria" with API 5L Gr. X65 pipeline(D=762 mm). The FE model considers DB-24 vehicle load as a time function with a varying velocity in the range of $20{\sim}160\;km/h$. Maximum vibration velocity occurs at v=80 km/h and decreases after v=80 km/h. The maximum vibration velocity of buried pipeline by DB-24 loads is about 0.034 cm/s. The velocity that occurs is in the range of allowable values for each vibration velocity criterion. The wave propagation velocity was identified based on attenuation law and the minimum value appears at vehicle velocity 80 km/h that has maximum vibration velocity.

  • PDF

Detectability Evaluation for Alert Sound in an Electric Vehicle (전기자동차의 경고음에 대한 인지성 평가)

  • Han, Man Uk;Lee, Sang Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.923-929
    • /
    • 2017
  • Generally, the sound emitted from a vehicle powered by an electric motor is lower than that of internal combustion engine vehicles. Therefore, pedestrians often cannot detect approaching electric vehicles. Therefore, a certain additional warning sound is required for these types of automobiles. In this study, to develop an audible warning sound, nine warning sounds are designed based on signal processing and chord theory. The background noise measured on the road is also added to these synthetic sounds. The detectability of these warning sounds is evaluated by subjective tests. The sound metric is correlated to detectability and is investigated through psychoacoustic theory and subjective evaluation. It is determined that known psychoacoustic parameters such as loudness, sharpness, and roughness have a low correlation with detectability. However, it is found that the interval of harmonic sound correlates well with detectability.

Design of Hybrid V2X Communication Module for Cooperative Automated Driving (자율협력주행을 위한 하이브리드 V2X 통신모듈 설계)

  • Lim, Ki-taeg;Jin, Seong-keun;Kwak, Jae-min
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • In this paper, we propose a design method and process for hardware and software of hybrid V2X communication module that supports both C-ITS communication protocol designed for vehicle environment and Legacy LTE communication technology. C-ITS is suitable for safety service applications due to its low latency characteristics, and Legacy LTE is a technology suitable for non-safety applications such as traffic information and infotainment due to high latency and high capacity. The hybrid V2X communication module supports multiple communication technologies of WAVE and LTE, in which WAVE supports multiple channels, so that it is designed to transmit road information such as LDM and positioning correction information to an autonomous vehicle in real time. The main design results presented in this paper will be applied to the implementation of future hybrid V2X communication terminals for vehicles.

Reduction of Relative Position Error for DGPS Based Localization of AUV using LSM and Kalman Filter (최소자승법과 Kalman Filter를 이용한 AUV 의 DGPS 기반 Localization 의 위치 오차 감소)

  • Eom, Hyeon-Seob;Kim, Ji-Yen;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.52-60
    • /
    • 2010
  • It is generally important to get a precise position information for autonomous unmanned vehicle(AUV) to run safely. For getting the position of AUV, the GPS has been using to navigation in a vehicle. Though it is useful to finding a position, it is difficult to precisely control a trajectory of the AUV due to large measuring error which may reach over 10 meters. Therefore to apply AUV it needs to compensate for the error. This paper proposes a method to more precisely localize AUV using three low-cost differential global positioning systems (DGPS). The distance errors between each DGPS are minimized as using the least square method (LSM) and the Kalman filter to eliminate a Gaussian white noise. The selected DGPS is cheaper and easier to set up than the RTK-GPS. It is also more precise than the general GPS. The proposed method can compensate the relatively position error according to stationary and moving distance of the AUV. For evaluating the algorithm by simulation, the DGPS signal with the Gaussian white noise to any points is generated by the AR model and compared with the measurement signal. It is confirmed that the proposed method can effectively compensate the position error as comparing with the measurement signal. The compensated position signal can be used to localize and control the AUV in the road.

Estimating Utility Function of In-Vehicle Traffic Safety Information Incorporating Driver's Short-Term Memory (운전자 단기기억 특성을 고려한 차내 교통안전정보의 효용함수 추정)

  • Kim, Won-Cheol;Fujiwara, Akimasa;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.127-135
    • /
    • 2009
  • Most traffic information that drivers receive while driving are stored in their short-term memory and disappear within a few seconds. Contemporary modeling approaches using a dummy variable can't fully explain this phenomenon. As such, this study proposes to use utility functions of real-time in-vehicle traffic safety information (IVTSI), analyzing its safety impacts based on empirical data from an on-site driving experiment at signalized intersection approach with a limited visibility. For this, a driving stability evaluation model is developed based on driver's driving speed choice, applying an ordered probit model. To estimate the specified utility functions, the model simultaneously accounts for various factors, such as traffic operation, geometry, road environment, and driver's characteristics. The results show three significant facts. First, a normal density function (exponential function) is appropriate to explain the utility of IVTSI proposed under study over time. Second, the IVTSI remains in driver's short-term memory for up to nearly 22 second after provision, decreasing over time. Three, IVTSI provision appears more important than the geometry factor but less than the traffic operation factor.

Estimation of Cumulative Axle-Load Spectrum for Axle-Load Distribution Standard by Vehicle Type (차종별 축하중 분포 정량화를 위한 누적 축하중 스펙트럼 추정연구)

  • An Ji-Hwan;Ohm Byung-Sik;Kim Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.29-37
    • /
    • 2006
  • The primary objective of this study is to characterize traffic axle loadings that consider Korea specific traffic conditions for developing mechanistic-based pavement design method as a part of Korea Pavement Research Program(KPRP). Although the concept of equivalent single axle load(ESAL) has been generally used since the 1960s for the pavement design, the mechanistic-based pavement design procedure requires more accurate axle loading data on the specific pavement. In this study, axle loading data were collected according to vehicle type and highway functional classification. Axle-load spectrum was then standardized by cumulative density function(cdf), because the axle load spectrum could vary from the observed site, truck traffic volume, and truck type, Finally, this study presented the procedure and S-shaped exponential models for characterizing axle load spectra according to vehicle type and highway functional classification.

  • PDF

Development of a Critical Value According to Commercial use Vehicle(BUS) (사업용 차량(버스)의 위험운전 임계값 개발)

  • Oh, Ju-Taek;Lee, Sang-Yong;Kim, Young-Sam
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.85-95
    • /
    • 2009
  • According to the accident statistics published by the National Police Agency in 2007, the number of commercial vehicle accidents explains 3.5 percent of the total number of traffic accidents of the year. Compared to other types of vehicles commercial vehicles may provide more serious damages to both driver himself and passengers. Thus, they generate more serious social and economic problems. There have been various forms of systems such as a digital speedometer or a black box to meet the social requirement for reducing traffic accidents and improving safe driving. However, since the current systems are based on the data often accidents happened, there are lots of limitations to control drivers in real-time. Also, the current speedometers provide drivers with only speeds of vehicles and RPM information regardless of actual dangerous drive behaviors. Therefor, they lack of the effectiveness in terms of safety. In this research, real-time information systems for improving driver safety based on automatic risky driving behaviors, and thresholds to determine risky driving patterns were studied.

  • PDF

Design Methodology of Transverse Post-Tensioning for Prestressed Concrete Pavements (프리스트레스트 콘크리트 포장의 횡방향 긴장 설계방안)

  • Kim, Seong-Min;Yoon, Dong-Joo;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.269-279
    • /
    • 2008
  • This study was conducted to develop the design methodology of transverse post-tensioning for the prestressed concrete pavement (PSCP). The transverse stress distribution was analyzed when the transverse anchor spacing changed. The tensile stress distribution in the PSCP slab due to the environmental and vehicle loads was also investigated. The reasonable methods were discussed to determine the design loads including environmental and vehicle loads and the PSCP allowable tensile stress used for the basis of the selection of the stress application amount from the tensioning. The results of this study showed that as the transverse anchor spacing increased, the range of the stress loss became larger and the stress loss was significant near the shoulder. The design of the transverse post-tensioning can be performed by obtaining the stresses under the design loads and by considering the allowable tensile stress; however, the tensile stresses at different locations such as the shoulder, wheel pass, and slab interior should also be checked and kept below the allowable tensile stress.

  • PDF