• Title/Summary/Keyword: road safety

Search Result 1,807, Processing Time 0.026 seconds

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

Effect of Calcium Chloride and Sodium Chloride on the Leaching Behavior of Heavy Metals in Roadside Sediments (염화칼슘과 소금이 도로변 퇴적물의 중금속 용출에 미치는 영향)

  • Lee Pyeong koo;Yu Youn hee;Yun Sung taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • Deicer operations provide traffic safety during winter driving conditions in urban areas. Using large quantities of de-icing chemicals (i.e., $CaCl_2$ and NaCl) can cause serious environmental problems and may change behaviors of heavy metals in roadside sediments, resulting in an increase in mobilization of heavy metals due to complexation of heavy metals with chloride ions. To examine effect of de-icing salt concentration on the leaching behaviors and mobility of heavy metals (cadmium, zinc, copper, lead, arsenic, nickel, chromium, cobalt, manganese, and iron), leaching experiments were conducted on roadside sediments collected from Seoul city using de-icing salt solutions having various concentrations (0.01-5.0M). Results indicate that zinc, copper, and manganese in roadside sediments were easily mobilized, whereas chromium and cobalt remain strongly fixed. The zinc, copper and manganese concentrations measured in the leaching experiments were relatively high. De-icing salts can cause a decrease in partitioning between adsorbed (or precipitated) and dissolved metals, resulting in an increase in concentrations of dissolved metals in salt laden snowmelt. As a result, run-off water quality can be degraded. The de-icing salt applied on the road surface also lead to infiltration and contamination of heavy metal to groundwater.

Developing an Accident Model for Rural Signalized Intersections Using a Random Parameter Negative Binomial Method (RPNB모형을 이용한 지방부 신호교차로 교통사고 모형개발)

  • PARK, Min Ho;LEE, Dongmin
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.554-563
    • /
    • 2015
  • This study dealt with developing an accident model for rural signalized intersections with random parameter negative binomial method. The limitation of previous count models(especially, Poisson/Negative Binomial model) is not to explain the integrated variations in terms of time and the distinctive characters a specific point/segment has. This drawback of the traditional count models results in the underestimation of the standard error(t-value inflation) of the derived coefficient and finally affects the low-reliability of the whole model. To solve this problem, this study improves the limitation of traditional count models by suggesting the use of random parameter which takes account of heterogeneity of each point/segment. Through the analyses, it was found that the increase of traffic flow and pedestrian facilities on minor streets had positive effects on the increase of traffic accidents. Left turning lanes and median on major streets reduced the number of accidents. The analysis results show that the random parameter modeling is an effective method for investigating the influence on traffic accident from road geometries. However, this study could not analyze the effects of sequential changes of driving conditions including geometries and safety facilities.

Development of a Traffic Accident Prediction Model for Urban Signalized Intersections (도시부 신호교차로 안전성 향상을 위한 사고예측모형 개발)

  • Park, Jun-Tae;Lee, Soo-Beom;Kim, Jang-Wook;Lee, Dong-Min
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.99-110
    • /
    • 2008
  • It is commonly estimated that there is a much higher potential for accidents at a crossroads than along a single road due to its plethora of conflicting points. According to the 2006 figures by the National Police Agency, the number of traffic accidents at crossroads is greatly increasing compared to that along single roads. Among others, crossroads installed with traffic signals have more varied influential factors for traffic accidents and leave much more room for improvement than ones without traffic signals; thus, it is expected that a noticeable effect could be achieved in safety if proper counter-measures against the hazards at a crossroads were taken together with an estimate of causes for accidents This research managed to develop models for accident forecasts and accident intensity by applying data on accident history and site inspection of crossroads, targeting four selected downtown crossroads installed with traffic signals. The research was done by roughly dividing the process into four stages: first, analyze the accident model examined before; second, select variables affecting traffic accidents; third, develop a model for traffic accident forecasting by using a statistics-based methodology; and fourth, carry out the verification process of the models.

Development of Traffic Accident Index Considering Driving Behavior of a Data Based (데이터 기반의 도로구간별 운전자의 통행행태를 고려한 교통사고지표 개발)

  • LEE, Soongbong;CHANG, Hyunho;CHEON, Seunghoon;BAEK, Seungkirl;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Highway is mainly in charge of middle-long distance of vehicular travel. Trip length has shown a growing trend due to increased commute distances by the relocation of public agencies. For this reason, the proportion of driver-driven accidents, caused by their fatigue or sleepiness, are very high on highways. However, existing studies related to accident prediction have mainly considered external factors, such as road conditions, environmental factors and vehicle factors, without driving behavior. In this study, we suggested an accident index (FDR, Fatigued Driving Rate) based on traffic behavior using large-scale Car Navigation path data, and exlpored the relationship between FDR and traffic accidents. As a result, FDR and traffic accidents showed a high correlation. This confirmed the need for a paradigm shift (from facilities to travel behavior) in traffic accident prediction studies. FDR proposed in this study will be utilized in a variety of fields. For example, in providing information to prevent traffic accidents (sleepiness, reckless driving, etc) in advance, utilization of core technologies in highway safety diagnostics, selection of priority location of rest areas and shelter, and selection of attraction methods (rumble strips, grooving) for attention for fatigued sections.

Automatic Traffic Data Collection Using Simulated Satellite Imagery (인공위성영상을 이용한 교통량측량 자동화)

  • 조우석
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.101-116
    • /
    • 1995
  • The fact that the demands on traffic data collection are imposed by economic and safety considerations raisese the question of the potential for complementing existing traffic data collection programs with satellite data. Evaluating and monitoring traffic characteristics is becoming increasingly important as worsening congestion, declining economic situations, and increasing environmental sensitivies are forcing the government and municipalities to make better use of existing roadway capacities. The present system of using automatic counters at selected points on highways works well from a temporal point of view (i.e., during a specific period of time at one location). However, the present system does not cover the spatial aspects of the entire road system (i.e., for every location during specific periods of time); the counters are employed only at points and only on selected highways. This lack of spatial coverage is due, in part, to the cost of the automatic counters systems (fixed procurement and maintenance costs) and of the personal required to deploy them. The current procedure is believed to work fairly well in the aggregate mode, at the macro level. However, at micro level, the numbers are more suspect. In addition, the statistics only work when assuming a certain homogenity among characteristics of highways in the same class, an assumption that is impossible to test whn little or no data is gathered on many of the highways for a given class. In this paper, a remote sensing system as complement of the existing system is considered and implemented. Since satellite imagery with high resolution is not available, digitized panchromatic imagery acquired from an aircraft platform is utilized for initial test of the feasibility and performance capability of remote sensing data. Different levels of imagery resolutions are evaluated in an attempt to determine what vehicle types could be classified and counted against a background of pavement types, which might be expected in panchromatic satellite imagery. The results of a systematic study with three different levels of resolutions (1m, 2m and 4m) show that the panchromat ic reflectances of vehicles and pavements would be distributed so similarly that it would be difficult to classify systematically and analytically remotely sensing vehicles on pavement within panchromatic range. Anaysis of the aerial photographs show that the shadows of the vehicles could be a cue for vehicle detection.

Seismic Fragility Evaluation of Inverted T-type Wall with a Backfill Slope Considering Site Conditions (사면 경사도가 있는 뒷채움토와 지반특성을 고려한 역T형 옹벽의 지진시 취약도 평가)

  • Seo, Hwanwoo;Kim, Byungmin;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.533-541
    • /
    • 2021
  • Retaining walls have been used to prevent slope failure through resistance of earth pressure in railway, road, nuclear power plant, dam, and river infrastructure. To calculate dynamic earth pressure and determine the characteristics for seismic behavior, many researchers have analyzed the nonlinear response of ground and structure based on various numerical analyses (FLAC, PLAXIS, ABAQUS etc). In addition, seismic fragility evaluation is performed to ensure safety against earthquakes for structures. In this study, we used the FLAC2D program to understand the seismic response of the inverted T-type wall with a backfill slope, and evaluated seismic fragility based on relative horizontal displacements of the wall. Nonlinear site response analysis was performed for each site (S2 and S4) using the seven ground motions to calculate various seismic loadings reflecting site characteristics. The numerical model was validated based on other numerical models, experiment results, and generalized formula for dynamic active earth pressure. We also determined the damage state and damage index based on the height of retaining wall, and developed the seismic fragility curves. The damage probabilities of the retaining wall for the S4 site were computed to be larger than those for the S2 site.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

Analysis of Construction Policy System for Quality Assurance of Construction Used Steels (건설용 강재의 품질확보를 위한 건설제도 분석 연구)

  • Yoon, Jongsik;Yu, Ilhan;Kim, Kyungrai;Jung, Daewoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.3-13
    • /
    • 2019
  • Recently, quality problems of steel used for construction have been raised as a cause of building collapse and safety accidents. Accordingly, it becomes more important to secure quality through material management, procurement management, and construction management for construction used steels. However, the quality management for construction used steels is confined to technical production and process control. So, it does not provide a solution of various non-conforming steel products issues. Therefore, this study suggests improvements of the construction system to secure quality of the construction used steels. Through expert interviews, we identify the items for system improvement and derive the top priority items by considering utility through a structured Analytic Hierarchy Process (AHP). It also divided the respondents into enterprise and research groups to analyze differences, implications and future improvement issues and suggest a road map. It is expected that the priority items derived in this study could be useful as a basic data for making policy decisions to assure the quality of construction used steel.

Security Credential Management & Pilot Policy of U.S. Government in Intelligent Transport Environment (지능형 교통 환경에서 미국정부의 보안인증관리 & Pilot 정책)

  • Hong, Jin-Keun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • This paper analyzed the SCMS and pilot policy, which is pursued by the U.S. government in connected vehicles. SCMS ensures authentication, integrity, privacy and interoperability. The SCMS Support Committee of U.S. government has established the National Unit SCMS and is responsible for system-wide control. Of course, it introduces security policy, procedures and training programs making. In this paper, the need for SCMS to be applied to C-ITS was discussed. The structure of the SCMS was analyzed and the U.S. government's filot policy for connected vehicles was discussed. The discussion of the need for SCMS highlighted the importance of the role and responsibilities of SCMS between vehicles and vehicles. The security certificate management system looked at the structure and analyzed the type of certificate used in the vehicle or road side unit (RSU). The functions and characteristics of the certificates were reviewed. In addition, the functions of basic safety messages were analyzed with consideration of the detection and warning functions of abnormal behavior in SCMS. Finally, the status of the pilot project for connected vehicles currently being pursued by the U.S. government was analyzed. In addition to the environment used for the test, the relevant messages were also discussed. We also looked at some of the issues that arise in the course of the pilot project.