• Title/Summary/Keyword: road profiles

Search Result 71, Processing Time 0.026 seconds

Comparison of Vibration Characteristics of a Multi-leaf Spring and a Tapered Leaf Spring of a Heavy Truck (대형트럭 다판 스프링과 테이퍼 판스프링의 진동특성 비교)

  • Oh Chae-Youn;Moon Il-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.270-276
    • /
    • 2005
  • This paper develops the flexible computational model of a heavy truck by interfacing the frame modeled as a flexible body to the heavy truck's computational model composed of rigid bodies. The frame is modeled by the finite element method. Three torsional modes and three bending modes of the frame are considered for the interface of the heavy truck's computational model. The actual vehicle test is conducted off road with a velocity of 20km/h. The vertical accelerations at the cab and front axle are measured in the test. For the verification of the developed computational model, the measured vertical acceleration profiles are compared with the simulation results of the heavy truck's flexible computational model. E grade irregular road profile of ISO is used as an excitation input in the simulation. The verified flexible computational model is used to compare the vibration characteristics of a front suspension system having a multi-leaf spring and that having a tapered leaf spring. The comparison results show that the front suspension having a tapered leaf spring has a higher vertical acceleration at the front axle but a lower vertical acceleration at the cab than the suspension system having a multi-leaf spring.

The Driving Trajectory Measurement and Analysis Techniques using Conventional GPS Sensor for the Military Operation Environments (군운용 환경에 적합한 GPS 센서기반 주행궤적 측정 및 분석 기술)

  • Jung, Ilgyu;Ryu, Chiyoung;Kim, Sangyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.774-780
    • /
    • 2017
  • The techniques for driving trajectory calculation and driving trajectory distribution calculation are proposed to analyze the durability of ground vehicles effectively. To achieve this aim, the driving trajectory of a vehicle and the driving trajectory distribution of that are needed, in addition to road profile. The road profiles can be measured by a profilometer but a driving trajectory of a vehicle cannot be acquired effectively due to a large position error from a conventional GPS sensor. Therefore two techniques are proposed to reduce the position error of a vehicle and achieve the distribution of driving trajectory of that. The driving trajectory calculation technique produces relative positions by using the velocity, time and heading of a vehicle. The driving trajectory distribution calculation technique produces distributions of the driving trajectory by using axis transformation, estimating reference line, dividing sectors and plotting a histogram of the sectors. As a results of this study, we can achieve the considerably accurate driving trajectory and driving trajectory distribution of a vehicle.

A Study on the Relation between IRI and PrI (평탄성 지수 IRI와 PrI의 상관관계에 관한 연구)

  • Kim, Kook-Han;Lee, Byung-Duck;Choi, Go-Il;Yang, Sung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.11-18
    • /
    • 2003
  • Road roughness, as the key factor influencing not only drivers' ride quality and safety but also pavement deterioration, is one of the most important pavement performance indicator to be evaluated by users' subjective assessment. For this reason, a specific number of the pavement roughness has been adopted to monitor the condition of a road for pavement management systems and to evaluate the quality of newly constructed sections, however, none of the unified methodology was internationally accepted. In Korea highway network, road roughness has been used mainly to evaluate newly placed pavement by using 7.6m CP (California Profile meter) to calculate PrI (Profile Index). But this instrument is manually operated to measure road profiles by traffic closure and their interpretation depends on personal bias. Therefore, problems arisen from the manually operated instrument will be overcome by using the APL (Longitudinal Profile Analyzer) which can be operated in the speed of 80km per hour. A study was conducted to correlate the relation from both concrete and asphalt pavement between IRI (measured by APL) and PrI (measured by 7.6m CP). Test results showed that there was a good correlation between IRI and PrI.

  • PDF

Eco-driving Method at Highway including Grade using GPS Altitude data (GPS 고도 데이터를 이용한 경사가 있는 고속국도에서 에코드라이빙 방안)

  • Choi, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2011
  • A vehicle fuel economy is very important issue in view of fuel cost and environmental regulation. The technology development for the fuel economy improvement improved the engine, power train and many components of vehicle. So, the fuel economy is much improved, but up to now the measurement of it tests the given mode(LA-4, FTP-75, etc) within computer simulation program and engine dynamo. In this paper, to deduct the method of its improvement of real road, the test vehicle ran 213Km Youngdong real highway using 3 different algorithms in computer simulation. For this, I extracted the distance and altitude data from received GPS data and calculated the grade angle, road load and accomplished the velocity profiles according to algorithms in all 213Km distance. The vehicle runs in computer with AVL Cruise simulation program using velocity profile. I calculate the fuel economy using AVL Cruise simulation result and propose the Eco-driving method of them.

Effect of Double Noise-Barrier on Air Pollution Dispersion around Road, Using CFD

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Noise-barriers on both sides of the roadway (hereafter referred to as double noise-barriers), are a common feature along roads in Korea, and these are expected to have important effects on the near-road air pollution dispersion of vehicle emissions. This study evaluated the double noise-barrier impact on near-road air pollution dispersion, using a FLUENT computational fluid dynamics (CFD) model. The realizable k-${\varepsilon}$ model in FLUENT CFD code was used to simulate vehicle air pollutant dispersion, in around 11 cases of double noise-barriers. The simulated concentration profiles and surface concentrations under no barrier cases were compared with the experimental results. The results of the simulated flows show the following three regimes in this study: isolated roughness (H/W=0.05), wake interface (H/W=0.1), and skimming flow (H/W>0.15). The results also show that the normalized average concentrations at surface (z=1 m) between the barriers increase with increasing double noise-barrier height; however, normalized average concentrations at the top position between the barriers decrease with increasing barrier height. It was found that the double noise-barrier decreases normalized average concentrations of leeward positions, ranging from 0.8 (H/W=0.1, wake interface) to 0.1 (H/W=0.5, skimming flow) times lower than that of the no barrier case, at 10 x/h downwind position; and ranging from 1.0 (H/W=0.1) to 0.4 (H/W=0.5) times lower than that of the no barrier case, at 60 x/h downwind position.

An Analytical Study of Suspension Design Parameters in order to Reduce the Pitching Motion of Medium Truck (중형 트럭의 피칭 운동 저감을 위한 현가계의 설계 변수에 관한 해석적 연구)

  • 이희범;이기호;김태식;손한규;안찬우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.154-160
    • /
    • 1998
  • Ride quality of medium truck became a very important factor in the suspension design, to the demand of more comfortable ride of passengers. This study describes how to determine and evaluate design parameters related to the chassis suspension system with time and frequency analysis. The spring stiffness and damping force of the chassis suspension system were obtained by observing the vertical acceleration PSD. The simulation was carried out on various road profiles, which was suggested by ISO. The pitching motion of the medium size truck was observed to improve the ride quality. A computer simulated truck model was constructed using DADS, a commercial dynamic analysis software, in order to simulate the truck motions. From the analyzed process of suspension parameters, it was concluded that the spring and the shock absorbers affect the pitching of the vehicle. In order to validate the computer simulated truck model, a physical prototype was constructed and tested.

  • PDF

Correlation between Subjective and Objective Assessments of Ride Comfort (승차감 관련 주관평가와 객관평가의 상관성 연구)

  • Kim, Min-Seok;Kim, Yon-Tae;Moon, Won-Kil;Ahn, Se-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.56-62
    • /
    • 2007
  • In order to compare subjective and objective assessments, a passenger car was driven at several speeds over several road profiles. To measure the acceleration signals experienced by the seated subject who provided an subjective assessment, four triaxial translational accelerometers and one triaxial gyro sensor were mounted on the steering wheel and on the passenger seat and floor, respectively. Correlations were determined between the measured accelerations and the subjective assessments of 3 expert subjects and 9 general subjects using psychophysical power law.

A Study on the Effect of a Series of Trucks on Dynamic load Factor (연속 차량하중에 의한 충격하중의 영향에 관한 연구)

  • 황의성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.105-110
    • /
    • 1992
  • This study deals with the effect of a series of moving trucks on the Dynamic Load Factor (DLF). The DLF is calculated by investigating the load effect of moving trucks. Therefore, analytical models for frocks, bridge, and road profiles were developed and dynamic structural analysis computer program were developed. Then the DLFs are calculated as a ratio of maximum dynamic load effect and maximum static load effect. Trucks used in this study are 5 axle semi tractor-trailer with the weight of 36 and 54 ton. Simply supported prestressed concrete box girder bridges with 20 and 40m span length are selected. From the results of the DLF for various headway distances, they show a very scattered and relatively high values of the DLF in case of a 20m span length bridge. For a 40m span length bridge, the results show less scattered and small increase of the DLF compared to a 20m span length bridge.

  • PDF

Analysis of Problems in Road Cut-Slope Design Based on Practical Example (사례연구를 통한 도로 절개면 설계 문제점 분석과 대책안 제시)

  • 이기하;백영식;구호본;박혁진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.167-174
    • /
    • 2000
  • Profiles of discontinuities through scanline method were investigated for the analysis of rock slope stability. Lower hemispheric projection method was used to evaluate the geometric stability and failure potential of these discontinuities. Also, safety factor was evaluated for the discontinuities of failure potential using by limit equilibrium analysis. Then, displacements of rock block due to the discontinuities were displayed by using the program UDEC(Universal Distinct Element Code) which applied the Distinct Element Method. When we determine the cut-slope in design, the characteristics of discontinuities is not represented only by strength parameters of intact rock. Therefore it is more reasonable method in assuring stability that first, construction would be preceded by the cut-slope of preliminary design, and then, cut-slope would be redetermined by elaborate site investigation in processing construction.

  • PDF

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.