• Title/Summary/Keyword: road network

Search Result 974, Processing Time 0.027 seconds

Automated Creation of Road Network from Road Edges

  • Wang, P.T.;Doihara, T.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1249-1251
    • /
    • 2003
  • In this paper, a framework for creating road network from road edges is proposed. The present framework mainly includes two modules: road modeler and network generator. Road modeler creates the road polygons from the original road edges, and network generator performs converting road polygons to road network with good connectivity at all intersections. A prototype system is also built, and some experimental results are also presented to demonstrate the effectiveness of the proposed framework.

  • PDF

Generalization of Road Network using Logistic Regression

  • Park, Woojin;Huh, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.91-97
    • /
    • 2019
  • In automatic map generalization, the formalization of cartographic principles is important. This study proposes and evaluates the selection method for road network generalization that analyzes existing maps using reverse engineering and formalizes the selection rules for the road network. Existing maps with a 1:5,000 scale and a 1:25,000 scale are compared, and the criteria for selection of the road network data and the relative importance of each network object are determined and analyzed using $T{\ddot{o}}pfer^{\prime}s$ Radical Law as well as the logistic regression model. The selection model derived from the analysis result is applied to the test data, and road network data for the 1:25,000 scale map are generated from the digital topographic map on a 1:5,000 scale. The selected road network is compared with the existing road network data on the 1:25,000 scale for a qualitative and quantitative evaluation. The result indicates that more than 80% of road objects are matched to existing data.

Estimation of Road-Network Performance and Resilience According to the Strength of a Disaster (재난 강도에 따른 도로 네트워크의 성능 및 회복력 산정 방안)

  • Jung, Hoyong;Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • PURPOSES : This study examines the performance changes of road networks according to the strength of a disaster, and proposes a method for estimating the quantitative resilience according to the road-network performance changes and damage scale. This study also selected high-influence road sections, according to disasters targeting the road network, and aimed to analyze their hazard resilience from the network aspect through a scenario analysis of the damage recovery after a disaster occurred. METHODS : The analysis was conducted targeting Sejong City in South Korea. The disaster situation was set up using the TransCAD and VISSIM traffic-simulation software. First, the study analyzed how road-network damage changed the user's travel pattern and travel time, and how it affected the complete network. Secondly, the functional aspects of the road networks were analyzed using quantitative resilience. Finally, based on the road-network performance change and resilience, priority-management road sections were selected. RESULTS : According to the analysis results, when a road section has relatively low connectivity and low traffic, its effect on the complete network is insignificant. Moreover, certain road sections with relatively high importance can suffer a performance loss from major damage, for e.g., sections where bridges, tunnels, or underground roads are located, roads where no bypasses exist or they exist far from the concerned road, including entrances and exits to suburban areas. Relatively important roads have the potential to significantly degrade the network performance when a disaster occurs. Because of the high risk of delays or isolation, they may lead to secondary damage. Thus, it is necessary to manage the roads to maintain their performance. CONCLUSIONS : As a baseline study to establish measures for traffic prevention, this study considered the performance of a road network, selected high-influence road sections within the road network, and analyzed the quantitative resilience of the road network according to scenarios. The road users' passage-pattern changes were analyzed through simulation analysis using the User Equilibrium model. Based on the analysis results, the resilience in each scenario was examined and compared. Sections where a road's performance loss had a significant influence on the network were targeted. The study results were judged to become basic research data for establishing response plans to restore the original functions and performance of the destroyed and damage road networks, and for selecting maintenance priorities.

A Model to Calibrate Expressway Traffic Forecasting Errors Considering Socioeconomic Characteristics and Road Network Structure (사회경제적 특성과 도로망구조를 고려한 고속도로 교통량 예측 오차 보정모형)

  • Yi, Yongju;Kim, Youngsun;Yu, Jeong Whon
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2013
  • PURPOSES : This study is to investigate the relationship of socioeconomic characteristics and road network structure with traffic growth patterns. The findings is to be used to tweak traffic forecast provided by traditional four step process using relevant socioeconomic and road network data. METHODS: Comprehensive statistical analysis is used to identify key explanatory variables using historical observations on traffic forecast, actual traffic counts and surrounding environments. Based on statistical results, a multiple regression model is developed to predict the effects of socioeconomic and road network attributes on traffic growth patterns. The validation of the proposed model is also performed using a different set of historical data. RESULTS : The statistical analysis results indicate that several socioeconomic characteristics and road network structure cleary affect the tendency of over- and under-estimation of road traffics. Among them, land use is a key factor which is revealed by a factor that traffic forecast for urban road tends to be under-estimated while rural road traffic prediction is generally over-estimated. The model application suggests that tweaking the traffic forecast using the proposed model can reduce the discrepancies between the predicted and actual traffic counts from 30.4% to 21.9%. CONCLUSIONS : Prediction of road traffic growth patterns based on surrounding socioeconomic and road network attributes can help develop the optimal strategy of road construction plan by enhancing reliability of traffic forecast as well as tendency of traffic growth.

Development of Road-Following Controller for Autonomous Vehicle using Relative Similarity Modular Network (상대분할 신경회로망에 의한 자율주행차량 도로추적 제어기의 개발)

  • Ryoo, Young-Jae;Lim, Young-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.550-557
    • /
    • 1999
  • This paper describes a road-following controller using the proposed neural network for autonomous vehicle. Road-following with visual sensor like camera requires intelligent control algorithm because analysis of relation from road image to steering control is complex. The proposed neural network, relative similarity modular network(RSMN), is composed of some learning networks and a partitioniing network. The partitioning network divides input space into multiple sections by similarity of input data. Because divided section has simlar input patterns, RSMN can learn nonlinear relation such as road-following with visual control easily. Visual control uses two criteria on road image from camera; one is position of vanishing point of road, the other is slope of vanishing line of road. The controller using neural network has input of two criteria and output of steering angle. To confirm performance of the proposed neural network controller, a software is developed to simulate vehicle dynamics, camera image generation, visual control, and road-following. Also, prototype autonomous electric vehicle is developed, and usefulness of the controller is verified by physical driving test.

  • PDF

Planning and Evaluation of Synthetic Forest Road Network using GIS (GIS를 이용한 복합임도망의 계획 및 평가)

  • Kweon, Hyeongkeun;Seo, Jung Il;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • This study was conducted to evaluate the effect of the synthetic forest road network by calculating the optimal road density and layout of the forest road network in order to construct the systematic road network in the forested area. For this, five comparative routes were additionally planed and compared through evaluation indicators. As a result, the optimum road density of the study site was estimated to be 18.4 m/ha, and the synthetic forest road network was the best in the four indicators such as average skidding distance, standard deviation of skidding distance, development index, and circuity factor. In addition, the synthetic forest road network was comparable to the main road network by about 4 %p in the timber volume available and potential area size for logging, but the construction cost of the road was about 20 %p lower. It showed a synthetic forest road network was better in terms of economy.

Directional texture information for connecting road segments in high spatial resolution satellite images

  • Lee, Jong-Yeol
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.245-245
    • /
    • 2005
  • This paper addresses the use of directional textural information for connecting road segments. In urban scene, some roads are occluded by buildings, casting shadow of buildings, trees, and cars on streets. Automatic extraction of road network from remotely sensed high resolution imagery is generally hindered by them. The results of automatic road network extraction will be incomplete. To overcome this problem, several perceptual grouping algorithms are often used based on similarity, proximity, continuation, and symmetry. Roads have directions and are connected to adjacent roads with certain angles. The directional information is used to guide road fragments connection based on roads directional inertia or characteristics of road junctions. In the primitive stage, roads are extracted with textural and direction information automatically with certain length of linearity. The primitive road fragments are connected based on the directional information to improve the road network. Experimental results show some contribution of this approach for completing road network, specifically in urban area.

  • PDF

A Clustering Scheme for Discovering Congested Routes on Road Networks

  • Li, He;Bok, Kyoung Soo;Lim, Jong Tae;Lee, Byoung Yup;Yoo, Jae Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1836-1842
    • /
    • 2015
  • On road networks, the clustering of moving objects is important for traffic monitoring and routes recommendation. The existing schemes find out density route by considering the number of vehicles in a road segment. Since they don’t consider the features of each road segment such as width, length, and directions in a road network, the results are not correct in some real road networks. To overcome such problems, we propose a clustering method for congested routes discovering from the trajectories of moving objects on road networks. The proposed scheme can be divided into three steps. First, it divides each road network into segments with different width, length, and directions. Second, the congested road segments are detected through analyzing the trajectories of moving objects on the road network. The saturation degree of each road segment and the average moving speed of vehicles in a road segment are computed to detect the congested road segments. Finally, we compute the final congested routes by using a clustering scheme. The experimental results showed that the proposed scheme can efficiently discover the congested routes in different directions of the roads.

Differences in Network-Based Kernel Density Estimation According to Pedestrian Network and Road Centerline Network

  • Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2018
  • The KDE (Kernel Density Estimation) technique in GIS (Geographic Information System) has been widely used as a method for determining whether a phenomenon occurring in space forms clusters. Most human-generated events such as traffic accidents and retail stores are distributed according to a road network. Even if events on forward and rear roads have short Euclidean distances, network distances may increase and the correlation between them may be low. Therefore, the NKDE (Network-based KDE) technique has been proposed and applied to the urban space where a road network has been developed. KDE is being studied in the field of business GIS, but there is a limit to the microscopic analysis of economic activity along a road. In this study, the NKDE technique is applied to the analysis of urban phenomena such as the density of shops rather than traffic accidents that occur on roads. The results of the NKDE technique are also compared to pedestrian networks and road centerline networks. The results show that applying NKDE to microscopic trade area analysis can yield relatively accurate results. In addition, it was found that pedestrian network data that can consider the movement of actual pedestrians are necessary for accurate trade area analysis using NKDE.

On Finding a Convenient Path in the Hierarchical Road Network

  • Sung, Ki-Seok;Park, Chan-Kyoo;Lee, Sang-Wook;Doh, Seung-Yong;Park, Soon-Dal
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.87-110
    • /
    • 2006
  • In a hierarchical road network, all roads can be classified according to their attributes such as speed limit, number of lanes, etc. By splitting the whole road network into the subnetworks of the highlevel and low-level roads, we can reduce the size of the network to be calculated at once, and find a path in the way that drivers usually adopt when searching out a travel route. To exploit the hierarchical property of road networks, we define a convenient path and propose an algorithm for finding convenient paths. We introduce a parameter indicating the driver's tolerance to the difference between the length of a convenient path and that of a shortest convenient path. From this parameter, we can determine how far we have to search for the entering and exiting gateway. We also propose some techniques for reducing the number of pairs of entries and exits to be searched in a road network. A result of the computational experiment on a real road network is given to show the efficiency of the proposed algorithm.