• Title/Summary/Keyword: road life cycle

Search Result 118, Processing Time 0.023 seconds

Cost Analysis of Asphalt Pavements Reinforced with Glass Fiber and Polymer Modified Using Falling Weight Deflectometer (Falling Weight Deflectometer를 이용한 섬유보강 아스팔트 및 폴리머 개질 아스팔트 포장의 비용 효과 분석)

  • Kim, Boo-Il;Lee, Moon-Sup;Jeon, Sung-Il;Kim, Sang-Kyu
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.153-160
    • /
    • 2009
  • Falling Weight Deflectometer (FWD) tests were performed to evaluate the structural capacity of glass fiber reinforced (GFR), polymer modified (PM), and unmodified asphalt pavement in Korea-LTPP (Long Term Pavement Performance) section. FWD tests showed that the tensile strains of GFR and PM asphalt pavements at the bottom of asphalt layer were 29% and 21% less than that of unmodified asphalt pavement. The structural capacity was then used as a performance criterion for calculating the cost effect of GFR and PM asphalt pavements. From the results, 5cm of asphalt layer thickness was reduced by applying GFR asphalt, and 3cm by applying PM asphalt. However, construction cost of PM and GFR asphalt pavement were increased due to the higher GFR and PM asphalt price. Life cycle cost analysis showed that the initial construction cost of GFR and PM asphalt pavement were higher but the management and user cost were less than those of unmodified asphalt pavement.

  • PDF

A Process of Optimization for the Best Orientation of Building Façades Based on the Genetic Algorithm by Utilizing Digital Topographic Map Data (수치지형도 데이터를 활용한 유전자 알고리즘 기반 건축외피의 최적향 산정 프로세스)

  • Choe, Seung-Ju;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.113-129
    • /
    • 2022
  • A building's eco-friendliness is directly related to various values including the life cycle cost of a building. However, the conventional architectural design method has a limitation in that it cannot create an optimized case according to the surrounding environmental conditions. Therefore, the purpose of this research is to present a design assistance tool that can review planning cases optimized for the environmental conditions of the building site in the planning stage of architectural production. To achieve the purpose of the study, an algorithm for realizing 3D modeling of the region and analysis of the solar environment was produced based on the site contours, building, and road information from the digital topographic map provided by the National Geographic Information Institute. To examine the validity of the developed algorithm, a comparative experiment was conducted targeting the elevation direction of the existing building. As a result, it was found that the optimal elevation direction selected by the algorithm can receive higher insolation compared to the front facade of the main building.

A Study on the Application of Very Rapid Hardening Acrylic Polymer Modified Concrete for Bonded Concrete Overlay Method (접착식 콘크리트 덧씌우기 공법을 위한 초속경 아크릴계 폴리머 개질 콘크리트의 적용성 연구)

  • Lee, Seung-Woo;Kim, Young-Kyu;Lee, Poong-Hee
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.139-148
    • /
    • 2011
  • Asphalt concrete overlay method is used by general maintenance and rehabilitation of construction for aged concrete pavement in Korea. However, in case of the AC overlay method to extend service life of the existing concrete pavements, various distresses of reflection crack, pothole and rutting are the typical problems of the asphalt overlay on existing concrete pavement since it has different physical characteristics between asphalt overlay and existing concrete pavement. To achieve this, application of concrete overlay method is required instead of AC overlay method. Concrete overlay method has advantages that can reduce maintenance cycle and costs since it has excellent bearing value for heavy vehicles and no rutting. However, technical problems of detour road construction, traffic control and other disadvantages happened by long curing time. Thus, in this study and experimental research were launched to evaluate the workability, durability and resistance against environmental loading of Very Rapid Hardening Acrylic Polymer Modified Concrete(VRH-APMC) for application of bonded concrete overlay method. Test results showed that the compressive and bond strength were exceed 21MPa and 1.4MPa of target strength after four hours for rapid traffic opening properties. And tests of resistance against environmental loading results showed that VRH-APMC secured excellent durability. Thus, it was known that VRH-APMC was suitable material for large scale bonded concrete overlay method, and it was possible to use maintenance and rehabilitation method which needs enough workability and rapid traffic opening.

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

A Study on the Design Value Analysis Methodology for Bridge Structure Using Reliability Analysis (신뢰성 해석을 이용한 교량구조물의 설계VA기법 연구)

  • Kim, Seong-Il;Lee, Kwang-Mo;Choi, Suk-Won;Jung, Jun-Hwa;Kim, Seong-Il
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.114-125
    • /
    • 2009
  • In this study, a design value analysis technique that considered stochastic LCC and stochastic performance evaluation was proposed, and by introducing the concept of reliability analysis, a decision making that secured reliability was supported. The results of this study, which was carried out according to the above objectives and methods, are summarized as follows: 1) The design value analysis procedures and value state function, improved in order to carry out a reliable analysis when evaluating alternate proposals that were extracted after the function definition was complete, were formalized, and in order to secure consistency and efficiency for value evaluation procedures, an evaluation index scheme was proposed; 2) Database collection and analysis were done for a bridge's LCC analysis. As for the collection scope of data, literature of previous research done on a bridge's LCC analysis was used as the basis for analysis, and for securing reliability regarding analysis results and dealing with uncertainty of collected data, the MCS technique was applied; 3) Weights and evaluation ranks for performance evaluation of each of the alternate proposals, as well as LCC analysis model, analysis period, discount rate, user expense, safety inspection and safety diagnosis expense conditions for LCC analysis were proposed. Lastly, a feasibility study was done and conclusion was made about "OO grand bridge and connecting road construction work execution design" project centered on value analysis execution case.

Effectiveness Analysis and Application of Phosphorescent Pavement Markings for Improving Visibility (축광노면표시 시인성 개선에 따른 경제성 분석 및 적용방안)

  • Yi, Yongju;Lee, Kyujin;Kim, Sangtae;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.815-825
    • /
    • 2017
  • Visibility of lane marking is impaired at night or in the rain, which thereby threatens traffic safety. Recently, various studies and technologies have been developed to improve lane marking visibility, such as the extension of lane marking life expectancy (up to 1.5 times), improvement of lane marking equipment productivity, improvement of lane marking visibility by applying phosphorescent material mixed paint. Cost-benefit analysis was performed with considering various benefit items that can be expected. About 45% of traffic accidents would be prevented by improving lane marking visibility. Additionally, accident reduction benefit and traffic congestion reduction benefit were calculated as much as 246 billion KRW per year and 12 billion KRW per year, respectively, by reducing repaint cycle due to enhanced durability. 45 billion KRW per year is expected to reduced with improved lane detection performance of autonomous vehicle. Meanwhile, total increased cost when introducing phosphorescent material mixed paint to 91,195km of nationwide road is identified as 1922 billion KRW per year. However, economic feasibility could not be secured with 0.16 of cost-benefit ratio when applied to the road network as a whole. In case of "Accident Hot Spot" analyzing section window (400m), one or more fatality or two or more injured (one or more injured in case of less than 2 lanes per direction) per year were caused by pavement marking related accident, economic feasibility was secured. In detail, 3.91 of cost-benefit ratio is estimated with comparison of the installation cost for 5,697 of accident hot spot and accident reduction benefit. Some limitations and future research agenda have also been discussed.

A Study on the Estimation Measure of Delay Cost on Work Zone Using the Traffic Flow Model (교통류 모형을 이용한 도로 점용공사 구간의 지체비용 산정방안)

  • Kim, Yunsik;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.120-129
    • /
    • 2016
  • The user cost is an important analysis item which should be considered together with life-cycle of facility, administrator cost and discount rate in LCCA for efficient asset management of SOC facilities. Especially, a significant delay cost occurs often for users in the road field due to a work zone for cleaning and maintenance, and in such case, the administrator should consider the administrator cost as well as the user cost for more rational decision making. However, the user cost has not been considered in most decision making steps until recently and relevant studies also have not been carried out actively. In this study, the methodology to estimate the user cost and delay cost required in the decision making step using the traffic flow model and the direct benefit estimation model in the traffic facility investment evaluation guideline is suggested. And, the traffic flow model was estimated on 4 national highway sections where maintenance was actually carried out in 2014 using VISSIM and, the user cost and the delay cost were estimated based on the suggested methodology. The analysis result showed that the average user cost of $17,569,000KRW/km{\times}day$ occurred on Section A with approximately 30,000 AADT before a work zone occurred, and in case the first lane was blocked for maintenance, the delay cost of $10,193,000KRW/km{\times}day$ (158%) on average occurred additionally. The delay cost of $1,507,000KRW/km{\times}day$ (115%) and $1,985,000KRW/km{\times}day$ (119%) occurred on Sections B and D with approximately 20,000 AADT respectively and the delay cost of $262,000KRW/km{\times}day$ (105%) occurred on Section C with approximately 10,000 AADT. This result of this study was estimated based on the simulation of traffic flow model so that there is a limitation in its actual application. A study ot develop a highly appropriate model using actual observation data and improve the possibility to apply it through the verification using the simulation will be necessary in future.