• Title/Summary/Keyword: road feature information

Search Result 125, Processing Time 0.02 seconds

Performance analysis of vehicle suspension systems with negative stiffness

  • Shi, Xiang;Shi, Wei;Xing, Lanchang
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.141-155
    • /
    • 2019
  • This work evaluates the influence of negative stiffness on the performances of various vehicle suspension systems, and proposes a re-centering negative stiffness device (NSD). The re-centering NSD consists of a passive magnetic negative stiffness spring and a positioning shaft with a re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of static spring deflection. The numerical simulations reveal that negative stiffness can improve the ride comfort of a vehicle without affecting its road holding abilities for either passive or semi-active suspension systems. In general, the improvement degree of ride comfort increases as negative stiffness increases. For passive suspension system, negative stiffness brings in negative stiffness feature in the control forces, which is helpful for the ride comfort of a vehicle. For semi-active suspensions, negative stiffness can alleviate the impact of clipped damping in semi-active dampers, and thus the ride comfort of a vehicle can be improved.

A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal (그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구)

  • Yun Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • High-resolution aerial color image offers great possibilities for geometric and semantic information for spatial data generation. However, shadow casts by buildings and trees in high-density urban areas obscure much of the information in the image giving rise to potentially inaccurate classification and inexact feature extraction. Though many researches have been implemented for solving shadow casts, few studies have been carried out about the extraction of features hindered by shadows from aerial color images in urban areas. This paper presents a asphalt road boundary extraction technique that combines information from aerial color image and LIDAR (LIght Detection And Ranging) data. The following steps have been performed to remove shadow effects and to extract road boundary from the image. First, the shadow regions of the aerial color image are precisely located using LEAR DSM (Digital Surface Model) and solar positions. Second, shadow regions assumed as road are corrected by shadow path reconstruction algorithms. After that, asphalt road boundary extraction is implemented by segmentation and edge detection. Finally, asphalt road boundary lines are extracted as vector data by vectorization technique. The experimental results showed that this approach was effective and great potential advantages.

Road Extraction by the Orientation Perception of the Isolated Connected-Components (고립 연결-성분의 방향성 인지에 의한 도로 영역 추출)

  • Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Road identification is the important task for extracting a road region from the high-resolution satellite images, when the road candidates is extracted by the pre-processing tasks using a binarization, noise removal, and color processing. Therefore, we propose a noble approach for identifying a road using the orientation-selective spatial filters, which is motivated by a computational model of neuron cells found in the primary visual cortex. In our approach, after the neuron cell typed spatial filters is applied to the isolated connected-labeling road candidate regions, proposed method identifies the region of perceiving the strong orientation feature with the real road region. To evaluate the effectiveness of the proposed method, the accuracy&error ratio in the confusion matrix was measured from road candidates including road and non-road class. As a result, the proposed method shows the more than 92% accuracy.

Antiblurry Dejitter Image Stabilization Method of Fuzzy Video for Driving Recorders

  • Xiong, Jing-Ying;Dai, Ming;Zhao, Chun-Lei;Wang, Ruo-Qiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3086-3103
    • /
    • 2017
  • Video images captured by vehicle cameras often contain blurry or dithering frames due to inadvertent motion from bumps in the road or by insufficient illumination during the morning or evening, which greatly reduces the perception of objects expression and recognition from the records. Therefore, a real-time electronic stabilization method to correct fuzzy video from driving recorders has been proposed. In the first stage of feature detection, a coarse-to-fine inspection policy and a scale nonlinear diffusion filter are proposed to provide more accurate keypoints. Second, a new antiblurry binary descriptor and a feature point selection strategy for unintentional estimation are proposed, which brought more discriminative power. In addition, a new evaluation criterion for affine region detectors is presented based on the percentage interval of repeatability. The experiments show that the proposed method exhibits improvement in detecting blurry corner points. Moreover, it improves the performance of the algorithm and guarantees high processing speed at the same time.

Vehicle Detection and Classification Using Textural Similarity in Wavelet Domain (웨이브렛 영역에서의 질감 유사성을 이용한 차량검지 및 차종분류)

  • 임채환;박종선;이창섭;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1191-1202
    • /
    • 1999
  • We propose an efficient vehicle detection and classification algorithm for an electronic toll collection using the feature which is robust to abrupt intensity change between consecutive frames. The local correlation coefficient between wavelet transformed input and reference images is used as such a feature, which takes advantage of textural similarity. The usefulness of the proposed feature is analyzed qualitatively by comparing the feature with the local variance of a difference image, and is verified by measuring the improvements in the separability of vehicle from shadowy or shadowless road for a real test image. Experimental results from field tests show that the proposed vehicle detection and classification algorithm performs well even under abrupt intensity change due to the characteristics of sensor and occurrence of shadow.

  • PDF

A High Speed Road Lane Detection based on Optimal Extraction of ROI-LB (관심영역(ROI-LB)의 최적 추출에 의한 차선검출의 고속화)

  • Cheong, Cha-Keon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.253-264
    • /
    • 2009
  • This paper presents an algorithm, aims at practical applications, for the high speed processing and performance enhancement of lane detection base on vision processing system. As a preprocessing for high speed lane detection, the vanishing line estimation and the optimal extraction of region of interest for lane boundary (ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled. Image feature information is extracted only in the ROI-LB. Road lane is extracted using a non-parametric model fitting and Hough transform within the ROI-LB. With simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since outliers of edge at each block can be removed with clustering of edge orientation for each block within the ROI-LB, the performance of lane detection can be greatly improved. The various real road experimental results are presented to evaluate the effectiveness of the proposed method.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we proposed a deep learning model based on multi-scale dilated convolution feature fusion for the segmentation of black ice region in road image to send black ice warning to drivers in real time. In the proposed multi-scale dilated convolution feature fusion network, different dilated ratio convolutions are connected in parallel in the encoder blocks, and different dilated ratios are used in different resolution feature maps, and multi-layer feature information are fused together. The multi-scale dilated convolution feature fusion improves the performance by diversifying and expending the receptive field of the network and by preserving detailed space information and enhancing the effectiveness of diated convolutions. The performance of the proposed network model was gradually improved with the increase of the number of dilated convolution branch. The mIoU value of the proposed method is 96.46%, which was higher than the existing networks such as U-Net, FCN, PSPNet, ENet, LinkNet. The parameter was 1,858K, which was 6 times smaller than the existing LinkNet model. From the experimental results of Jetson Nano, the FPS of the proposed method was 3.63, which can realize segmentation of black ice field in real time.

Robust Traffic Monitoring System by Spatio-Temporal Image Analysis (시공간 영상 분석에 의한 강건한 교통 모니터링 시스템)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1534-1542
    • /
    • 2004
  • A novel vision-based scheme of extracting real-time traffic information parameters is presented. The method is based on a region classification followed by a spatio-temporal image analysis. The detection region images for each traffic lane are classified into one of the three categories: the road, the vehicle, and the shadow, using statistical and structural features. Misclassification in a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. Since only local images of detection regions are processed, the real-time operation of more than 30 frames per second is realized without using dedicated parallel processors, while ensuring detection performance robust to the variation of weather conditions, shadows, and traffic load.

Vision-based full-field panorama generation by UAV using GPS data and feature points filtering

  • Guo, Yapeng;Xu, Yang;Niu, Haowei;Li, Zhonglong;E., Yuhui;Jiao, Xinghua;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.631-641
    • /
    • 2020
  • To meet the urgent requirements of safety surveillance from civil engineering management authorities, this study proposes a refined and efficient approach to generate full-field high-resolution panorama of construction sites using camera-amounted UAV (Unmanned Aerial Vehicle). GPS (Global Position System) information extraction for pre-registration, feature points filtering for efficient registration and optimal seaming line seeking for fusion are performed in sequence to form the full-field panorama generation framework. Advantages of the proposed method are as follows. First, GPS information can sort images for pre-registration, avoiding inefficient repeated pairwise calculations and matching. Second, the feature points are filtered according to the characteristics of the construction site images to reduce the amount of calculation. The proposed framework is validated on a road construction site and results demonstrate that it can generate an accurate and high-quality full-site panorama for the safety supervision in a much efficient manner.

A Study on Feature Extraction of Linear Image (선형적 영상의 특징 추출에 관한 연구)

  • 김춘영;한백룡;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.1
    • /
    • pp.74-84
    • /
    • 1988
  • This paper presents feature extraction technique for linear image using edge detection algorithms. The process of edge finding consists of determining edge magnitud and direction by convolution of an image with a number of edge masks, of thinning and ghresholding these edge magnitudes, of linking the edge elemtnts based on proximity ans orientation, and finally, of approximating the linked elements by piede-wise linear segmentss. These techniques are intened to be general and opplications to terminal detection and road recognition tasks are described. The presentation will be helpful to other researchers attempting to implement similar algorithms.

  • PDF