• Title/Summary/Keyword: road feature information

Search Result 125, Processing Time 0.023 seconds

Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV (MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구)

  • Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.453-464
    • /
    • 2019
  • Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.

Traffic Flow Prediction Model Based on Spatio-Temporal Dilated Graph Convolution

  • Sun, Xiufang;Li, Jianbo;Lv, Zhiqiang;Dong, Chuanhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3598-3614
    • /
    • 2020
  • With the increase of motor vehicles and tourism demand, some traffic problems gradually appear, such as traffic congestion, safety accidents and insufficient allocation of traffic resources. Facing these challenges, a model of Spatio-Temporal Dilated Convolutional Network (STDGCN) is proposed for assistance of extracting highly nonlinear and complex characteristics to accurately predict the future traffic flow. In particular, we model the traffic as undirected graphs, on which graph convolutions are built to extract spatial feature informations. Furthermore, a dilated convolution is deployed into graph convolution for capturing multi-scale contextual messages. The proposed STDGCN integrates the dilated convolution into the graph convolution, which realizes the extraction of the spatial and temporal characteristics of traffic flow data, as well as features of road occupancy. To observe the performance of the proposed model, we compare with it with four rivals. We also employ four indicators for evaluation. The experimental results show STDGCN's effectiveness. The prediction accuracy is improved by 17% in comparison with the traditional prediction methods on various real-world traffic datasets.

Feature Based Techniques for a Driver's Distraction Detection using Supervised Learning Algorithms based on Fixed Monocular Video Camera

  • Ali, Syed Farooq;Hassan, Malik Tahir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3820-3841
    • /
    • 2018
  • Most of the accidents occur due to drowsiness while driving, avoiding road signs and due to driver's distraction. Driver's distraction depends on various factors which include talking with passengers while driving, mood disorder, nervousness, anger, over-excitement, anxiety, loud music, illness, fatigue and different driver's head rotations due to change in yaw, pitch and roll angle. The contribution of this paper is two-fold. Firstly, a data set is generated for conducting different experiments on driver's distraction. Secondly, novel approaches are presented that use features based on facial points; especially the features computed using motion vectors and interpolation to detect a special type of driver's distraction, i.e., driver's head rotation due to change in yaw angle. These facial points are detected by Active Shape Model (ASM) and Boosted Regression with Markov Networks (BoRMaN). Various types of classifiers are trained and tested on different frames to decide about a driver's distraction. These approaches are also scale invariant. The results show that the approach that uses the novel ideas of motion vectors and interpolation outperforms other approaches in detection of driver's head rotation. We are able to achieve a percentage accuracy of 98.45 using Neural Network.

Classification of Objects using CNN-Based Vision and Lidar Fusion in Autonomous Vehicle Environment

  • G.komali ;A.Sri Nagesh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.67-72
    • /
    • 2023
  • In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.

The Development Trend of Transportation Information System through Transportation Card Data (교통카드자료를 활용한 교통정보시스템 발전 방향)

  • Kim, Se-Won;Sohn, Moo-Sung;Min, Jae-Hong;Oh, Seog-Mun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1835-1847
    • /
    • 2011
  • After conducting demonstration of transportation card for bus from Godeok-dong to Sangil-dong in 1996, due to continuously support for public transportation, the transportation card utilization of metropolitan public transportation passengers is currently going beyond 90%. In the current situation, transportation information system is mainly focused on road operation and control, offer of real time information and research of transportation information system using transportation card data which is differentiated by previous transportation information system is needed to study. This paper compare and analyze transportation information system, which is being used to each country, based on foreign examples of activating use of transportation card then introduce figure of advanced transportation information system which provide decision making feature for improving policy and institution of public transportation based on transportation card data, scientific analysis of passenger information, information of demand forecasting, variation and so on for constructing new route.

  • PDF

Traffic Sign Area Detection System Based on Color Processing Mechanism of Human (인간의 색상처리방식에 기반한 교통 표지판 영역 추출 시스템)

  • Cheoi, Kyung-Joo;Park, Min-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.63-72
    • /
    • 2007
  • The traffic sign on the road should be easy to distinguishable even from far, and should be recognized in a short time. As traffic sign is a very important object which provides important information for the drivers to enhance safety, it has to attract human's attention among any other objects on the road. This paper proposes a new method of detecting the area of traffic sign, which uses attention module on the assumption that we attention our gaze on the traffic sign at first among other objects when we drive a car. In this paper, we analyze the previous studies of psycophysical and physiological results to get what kind of features are used in the process of human's object recognition, especially color processing, and with these results we detected the area of traffic sign. Various kinds of traffic sign images were tested, and the results showed good quality(average 97.8% success).

3D image mosaicking technique using multiple planes for urban visualization (복수 투영면을 사용한 도심지 가시화용 3 차원 모자이크 기술)

  • CHON Jaechoon;KIM Hyongsuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.41-50
    • /
    • 2005
  • A novel image mosaicking technique suitable for 3D urban visualization is proposed. It is not effective to apply 2D image mosaicking techniques for urban visualization when, for example, one is filming a sequence of images from a side-looking video camera along a road in an urban area. The proposed method presents the roadside scene captured by a side-looking video camera as a continuous set of textured planar faces, which are termed 'multiple planes' in this paper. The exterior parameters of each frame are first calculated through automatically selected matching feature points. The matching feature points are also used to estimate a plane approximation of the scene geometry for each frame. These planes are concatenated to create an approximate model on which images are back-projected as textures. Here, we demonstrate algorithm that creates efficient image mosaics in 3D space from a sequence of real images.

Fast Vehicle Detection based on Haarlike and Vehicle Tracking using SURF Method (Haarlike 기반의 고속 차량 검출과 SURF를 이용한 차량 추적 알고리즘)

  • Yu, Jae-Hyoung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • This paper proposes vehicle detection and tracking algorithm using a CCD camera. The proposed algorithm uses Haar-like wavelet edge detector to detect features of vehicle and estimates vehicle's location using calibration information of an image. After that, extract accumulated vehicle information in continuous k images to improve reliability. Finally, obtained vehicle region becomes a template image to find same object in the next continuous image using SURF(Speeded Up Robust Features). The template image is updated in the every frame. In order to reduce SURF processing time, ROI(Region of Interesting) region is limited on expended area of detected vehicle location in the previous frame image. This algorithm repeats detection and tracking progress until no corresponding points are found. The experimental result shows efficiency of proposed algorithm using images obtained on the road.

Shift in the Regional Balance of Power From Europe to Asia: A Case Study of ICT Industry

  • Hua, Jin;Latif, Zahid;Tiyan, Shen;Pathan, Zulfiqar Hussain;Tunio, Muhammad Zahid;Salam, Shafaq;Ximei, Liu
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.645-654
    • /
    • 2018
  • Information and communication technology (ICT) is increasingly recognized as an important driver of economic growth, innovation, employment and productivity and is widely accepted as a main feature of development. During the last couple of decades, ICT sector became the most innovative service sector that affected the living standards of human beings all over the world. In the beginning of the $21^{st}$ century, some of the Asian countries made reforms in the ICT sector and spent an enormous amount for the progress of this sector. On the other hand, developed countries in the European Union (EU) faced different crises which badly affected the dissemination of this sector. Consequently, EU countries lost their hegemony in the field of information technology and resultantly, some of the emerging Asian countries like China, India, and South Korea got supremacy over the EU in this field. Currently, these countries have a strong IT infrastructure, R&D sector, IT research centers working for the development of ICT. Moreover, this paper investigates reasons for the shifting of the balance of digital power from Europe to Asia.

Revolutionizing Traffic Sign Recognition with YOLOv9 and CNNs

  • Muteb Alshammari;Aadil Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.14-20
    • /
    • 2024
  • Traffic sign recognition is an essential feature of intelligent transportation systems and Advanced Driver Assistance Systems (ADAS), which are necessary for improving road safety and advancing the development of autonomous cars. This research investigates the incorporation of the YOLOv9 model into traffic sign recognition systems, utilizing its sophisticated functionalities such as Programmable Gradient Information (PGI) and Generalized Efficient Layer Aggregation Network (GELAN) to tackle enduring difficulties in object detection. We employed a publically accessible dataset obtained from Roboflow, which consisted of 3130 images classified into five distinct categories: speed_40, speed_60, stop, green, and red. The dataset was separated into training (68%), validation (21%), and testing (12%) subsets in a methodical manner to ensure a thorough examination. Our comprehensive trials have shown that YOLOv9 obtains a mean Average Precision (mAP@0.5) of 0.959, suggesting exceptional precision and recall for the majority of traffic sign classes. However, there is still potential for improvement specifically in the red traffic sign class. An analysis was conducted on the distribution of instances among different traffic sign categories and the differences in size within the dataset. This analysis aimed to guarantee that the model would perform well in real-world circumstances. The findings validate that YOLOv9 substantially improves the precision and dependability of traffic sign identification, establishing it as a dependable option for implementation in intelligent transportation systems and ADAS. The incorporation of YOLOv9 in real-world traffic sign recognition and classification tasks demonstrates its promise in making roadways safer and more efficient.