• Title/Summary/Keyword: road feature information

Search Result 125, Processing Time 0.026 seconds

Road Damage Detection and Classification based on Multi-level Feature Pyramids

  • Yin, Junru;Qu, Jiantao;Huang, Wei;Chen, Qiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.786-799
    • /
    • 2021
  • Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.

A Road Extraction Algorithm using Mean-Shift Segmentation and Connected-Component (평균이동분할과 연결요소를 이용한 도로추출 알고리즘)

  • Lee, Tae-Hee;Hwang, Bo-Hyun;Yun, Jong-Ho;Park, Byoung-Soo;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.359-364
    • /
    • 2014
  • In this paper, we propose a method for extracting a road area by using the mean-shift method and connected-component method. Mean-shift method is very effective to divide the color image by the method of non-parametric statistics to find the center mode. Generally, the feature points of road are extracted by using the information located in the middle and bottom of the road image. And it is possible to extract a road region by using this feature-point and the partitioned color image. However, if a road region is extracted with only the color information and the position information of a road image, it is possible to detect not only noise but also off-road regions. This paper proposes the method to determine the road region by eliminating the noise with the closing / opening operation of the morphology, and by extracting only the portion of the largest area using a connected-components method. The proposed method is simulated and verified by applying the captured road images.

A Study on Localization Methods for Autonomous Vehicle based on Particle Filter Using 2D Laser Sensor Measurements and Road Features (2D 레이저센서와 도로정보를 이용한 Particle Filter 기반 자율주행 차량 위치추정기법 개발)

  • Ahn, Kyung-Jae;Lee, Taekgyu;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.803-810
    • /
    • 2016
  • This paper presents a study of localization methods based on particle filter using 2D laser sensor measurements and road feature map information, for autonomous vehicles. In order to navigate in an urban environment, an autonomous vehicle should be able to estimate the location of the ego-vehicle with reasonable accuracy. In this study, road features such as curbs and road markings are detected to construct a grid-based feature map using 2D laser range finder measurements. Then, we describe a particle filter-based method for accurate positional estimation of the autonomous vehicle in real-time. Finally, the performance of the proposed method is verified through real road driving experiments, in comparison with accurate DGPS data as a reference.

Road Extraction from High Resolution Satellite Image Using Object-based Road Model (객체기반 도로모델을 이용한 고해상도 위성영상에서의 도로 추출)

  • Byun, Young-Gi;Han, You-Kyung;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.421-433
    • /
    • 2011
  • The importance of acquisition of road information has recently been increased with a rapid growth of spatial-related services such as urban information system and location based service. This paper proposes an automatic road extraction method using object-based approach which was issued alternative of pixel-based method recently. Firstly, the spatial objects were created by MSRS(Modified Seeded Region Growing) method, and then the key road objects were extracted by using properties of objects such as their shape feature information and adjacency. The omitted road objects were also traced considering spatial correlation between extracted road and their neighboring objects. In the end, the final road region was extracted by connecting discontinuous road sections and improving road surfaces through their geometric properties. To assess the proposed method, quantitative analysis was carried out. From the experiments, the proposed method generally showed high road detection accuracy and had a great potential for the road extraction from high resolution satellite images.

A Road Feature Extraction and Obstacle Localization Based on Stereo Vision (스테레오 비전 기반의 도로 특징 정보 추출 및 장애 물체 검출)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.28-37
    • /
    • 2009
  • In this paper, we propose an obstacle localization method using a road feature based on a V-disparity map binarized by a maximum frequency value. In a conventional method, the detection performance is severely affected by the size, number and type of obstacles. It's especially difficult to extract a large obstacle or a continuous obstacle like a median strip. So we use a road feature as a new decision standard to localize obstacles irrespective of external environments. A road feature is proper to be a new decision standard because it keeps its rough feature very well in V-disparity under environments where many obstacles exist. And first of all, we create a binary V-disparity map using a maximum frequency value to extract a road feature easily. And then we compare the binary V-disparity map with a median value to remove noises. Finally, we use a linear interpolation for rows which have no value. Comparing this road feature with each column value in disparity map, we can localize obstacles robustly. We also propose a post-processing technique to remove noises made in obstacle localization stage. The results in real road tests show that the proposed algorithm has a better performance than a conventional method.

A Road Lane Detection Algorithm using HSI Color Information and ROI-LB (HSI 색정보와 관심영역(ROI-LB)을 이용한 차선검출 알고리듬)

  • Choi, In-Suk;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.222-224
    • /
    • 2009
  • This paper presents an algorithm that extracts road lane's specific information by using HSI color information and performance enhancement of lane detection base on vision processing of drive assist. As a preprocessing for high speed lane detection, the optimal extraction of region of interest for lane boundary(ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled and it also increases reliabilities by deleting edges those are misrecognized. Road lane is extracted with simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since noise can be removed by using saturation and brightness of HSI color model. Also it searches for the road lane's color information and extracts characteristics. The real road experimental results are presented to evaluate the effectiveness of the proposed method.

  • PDF

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF

Feature Extraction of Road Information by Optical Neural Field (시각신경계의 개념을 이용한 도로정보의 특징추출)

  • Son, Jin-U;Lee, Uk-Jae;Lee, Haeng-Se
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.452-460
    • /
    • 1994
  • Maps are one of the most complicated types of drawings. Drawing recognition technology is not yet sophisticated enough for automated map reading To automatically extract a road map directly from more complicated topographical maps, a very complicated algorithm is needed, since the image generally involves such complicated patterns as symbols, characters, residential sections, rivers, railroads, etc. This paper describes a new feature extraction method based on the human optical neural field. We apply this method to extract complete set of road segments from topographical maps. The proposed method successfully extract road segments from various areas.

  • PDF

Method for Road Vanishing Point Detection Using DNN and Hog Feature (DNN과 HoG Feature를 이용한 도로 소실점 검출 방법)

  • Yoon, Dae-Eun;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A vanishing point is a point on an image to which parallel lines projected from a real space gather. A vanishing point in a road space provides important spatial information. It is possible to improve the position of an extracted lane or generate a depth map image using a vanishing point in the road space. In this paper, we propose a method of detecting vanishing points on images taken from a vehicle's point of view using Deep Neural Network (DNN) and Histogram of Oriented Gradient (HoG). The proposed algorithm is divided into a HoG feature extraction step, in which the edge direction is extracted by dividing an image into blocks, a DNN learning step, and a test step. In the learning stage, learning is performed using 2,300 road images taken from a vehicle's point of views. In the test phase, the efficiency of the proposed algorithm using the Normalized Euclidean Distance (NormDist) method is measured.

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF