The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.4
/
pp.95-105
/
2021
Road surface damage detection is essential for a comfortable driving environment and the prevention of safety accidents. Road management institutes are using automated technology-based inspection equipment and systems. As one of these automation technologies, a sensor to detect road surface damage plays an important role. For this purpose, several studies on sensors using deep learning have been conducted in recent years. Road images and label images are needed to develop such deep learning algorithms. On the other hand, considerable time and labor will be needed to secure label images. In this paper, the adversarial learning method, one of the semi-supervised learning techniques, was proposed to solve this problem. For its implementation, a lightweight deep neural network model was trained using 5,327 road images and 1,327 label images. After experimenting with 400 road images, a model with a mean intersection over a union of 80.54% and an F1 score of 77.85% was developed. Through this, a technology that can improve recognition performance by adding only road images was developed to learning without label images and is expected to be used as a technology for road surface management in the future.
Young-Joo Kwon;Hyun-Ju Ban;Sumin Ryu;Suna Jo;Han-Sol Ryu;Yerin Kim;Yun-Jeong Choi;Sungwook Hong
Journal of the Korean earth science society
/
v.45
no.4
/
pp.318-326
/
2024
Black ice, a thin and nearly invisible ice layer on roads and pavements, poses a significant danger to drivers and pedestrians during winter due to its transparency. We propose an efficient black ice detection system and technique utilizing Global Positioning System (GPS)-reflected signals. This system consists of a GPS antenna and receiver configured to measure the power of GPS L1 band signal strength. The GPS receiver system was designed to measure the signal power of the Right-Handed Circular Polarization (RHCP) and Left-Handed Circular Polarization (LHCP) from direct and reflected signals using two GPS antennas. Field experiments for GPS LHCP and RHCP reflection measurements were conducted at two distinct sites. We present a Normalized Polarized Reflection Index (NPRI) as a methodological approach for determining the presence of black ice on road surfaces. The field experiments at both sites successfully detected black ice on asphalt roads, indicated by NPRI values greater than -0.1 for elevation angles between 45° and 55°. Our findings demonstrate the potential of the proposed GPS-based system as a cost-effective and scalable solution for large-scale black ice detection, significantly enhancing road safety in cold climates. The scientific significance of this study lies in its novel application of GPS reflection signals for environmental monitoring, offering a new approach that can be integrated into existing GPS infrastructure to detect widespread black ice in real-time.
IEMEK Journal of Embedded Systems and Applications
/
v.17
no.5
/
pp.273-280
/
2022
Along with the advancement of deep learning technology, securing high-quality dataset for verification of developed technology is emerging as an important issue, and developing robust deep learning models to the domestic road environment is focused by many research groups. Especially, unlike expressways and automobile-only roads, in the complex city driving environment, various dynamic objects such as motorbikes, electric kickboards, large buses/truck, freight cars, pedestrians, and traffic lights are mixed in city road. In this paper, we built our dataset through multi camera-based processing (collection, refinement, and annotation) including the various objects in the city road and estimated quality and validity of our dataset by using YOLO-based model in object detection. Then, quantitative evaluation of our dataset is performed by comparing with the public dataset and qualitative evaluation of it is performed by comparing with experiment results using open platform. We generated our 2D dataset based on annotation rules of KITTI/COCO dataset, and compared the performance with the public dataset using the evaluation rules of KITTI/COCO dataset. As a result of comparison with public dataset, our dataset shows about 3 to 53% higher performance and thus the effectiveness of our dataset was validated.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.11
no.5
/
pp.125-135
/
2012
This paper proposes the new object detection system with two laser-scanners and a camera for classifying the objects and predicting the location of objects on road street. This detection system could be applied the new C-ITS service such as ADAS(Advanced Driver Assist System) or (semi-)automatic vehicle guidance services using object's types and precise position. This study describes the some examples in other countries and feasibility of object detection system based on a camera and two laser-scanners. This study has developed the heterogenous sensor's fusion method and shows the results of implementation at road environments. As a results, object detection system at roadside infrastructure is a useful method that aims at reliable classification and positioning of road objects, such as a vehicle, a pedestrian, and obstacles in a street. The algorithm of this paper is performed at ideal condition, so it need to implement at various condition such as light brightness and weather condition. This paper should help better object detection and development of new methods at improved C-ITS environment.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.25
no.1
/
pp.99-107
/
2014
Abruptly occurred obstacles on highway threaten driving safety. Radar draws the attention to the collision avoidance system because it can be fully operational in all weather, and day and night condition. This paper presents the design, implementation and performance test results of pulsed Doppler radar system for detection and warning of road obstacles. The system is designed to consider highway environment and detection capability about various fixed and moving obstacles. The system consists of 4 subsystems, which include antenna unit, transmitter and receiver unit, radar signal & data processing unit, and controller & display unit. The core technologies include clutter map based change detection for fixed obstacles detection, Doppler estimation for velocity detection of moving targets, and azimuth angle estimation method using monopulse for lane estimation and tracking. The design performance of the developed radar system is verified through experiments using a fixed reference target and moving vehicles in test highway.
Object detection plays a crucial role in a self-driving system. With the advances of image recognition based on deep convolutional neural networks, researches on object detection have been actively explored. In this paper, we proposed a lightweight model of the mask R-CNN, which has been most widely used for object detection, to efficiently predict location and shape of various objects on the road environment. Furthermore, feature maps are adaptively re-calibrated to improve the detection performance by applying an attention module to the neural network layer that plays different roles within the mask R-CNN. Various experimental results for real driving scenes demonstrate that the proposed method is able to maintain the high detection performance with significantly reduced network parameters.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.13
no.5
/
pp.35-49
/
2014
This paper proposes the on-road object detection and classification algorithm by using a detection system consisting of only laser scanners. Each sensor data acquired by the laser scanner is fused with a grid map and the measurement error and spot spaces are corrected using a labeling method and dilation operation. Fuzzy method which uses the object information (length, width) as input parameters can classify the objects such as a pedestrian, bicycle and vehicle. In this way, the accuracy of the detection system is increased. Through experiments for some scenarios in the real road environment, the performance of the proposed detection and classification system for the actual objects is demonstrated through the comparison with the actual information acquired by GPS-RTK.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.6
/
pp.228-241
/
2021
This study verified the performance change of a LiDAR when it detects road signs, which are potential cooperation targets for an autonomous vehicle. In particular, road signs of different colors and materials were produced and tested in controlled rainfall on the real road environment. The NPC and intensity were selected as the performance indicators, and a T-Test was used for comparison. The study results show that the performance of LiDAR for the detection of road signs was reduced with the increase of rainfall. The degradation of performance in retroreflective sheets was lesser than painted road signs, but at the amount of 40 mm/h or more, the detection performance of retroreflective sheets deteriorates to an extent that data cannot be collected. The performance level of black paint was lower than that of other colors on a clear day. In addition, the white sheet was most sensitively degraded with the increase in precipitation. These performance verification results are expected to be utilized in the manufacturing of road facilities that improve the visibility of sensors in the future.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.599-604
/
2008
Recently, many researches for autonomous mobile system have been proposed, which can recognize surrounded environment and navigate to destination without outside intervention. The basic sufficient condition for the autonomous mobile system is to navigate to destination safely without accident. In this paper, we propose a path planning method in local region for safe navigation of autonomous system through evaluation of the road surface distortion(damaged/deformed road, unpaved road, obstacle and etc.). We use laser distance sensor to get the information on the road surface distortion and apply image binalization method to evaluate safe region in the detected local region. We show the validity of the proposed method through the computer simulation based on the artificial local road map.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.1
/
pp.129-136
/
2018
In this paper, we propose a new real-time lane detection method that is efficient for road environment. Existing methods have a problem of low reliability under environmental changes. In order to overcome this problem, we emphasize the lane candidate area by using gray level division. And Extracts a straight line component near the lane by using the Hough transform, and generates an ROI for each straight line based on the extracted coordinates. And integrates the generated ROI images. Then, the lane is determined by dividing the object using the dual queue in the ROI image. The proposed method is able to detect lanes even in the environmental change unlike the conventional method. And It is possible to obtain an advantage that the area corresponding to the background such as sky, mountain, etc. is efficiently removed and high reliability is obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.