• Title/Summary/Keyword: rnn

Search Result 468, Processing Time 0.021 seconds

Intelligent Control of Nuclear Power Plant Steam Generator Using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 지능제어)

  • Kim, Sung-Soo;Lee, Jae-Gi;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2000
  • This paper presents a novel neural based controller which controls the water level of the nuclear power plant steam generator. The controller consists of a model reference feedback linearization controller and a PI controller for stabilizing the feedback linearization controller. The feedback linearization controller consists of a neural network model and an inversing module which uses the neural network model for computing the control input to the steam generator. We chose Piecewise Linearly Trained Network(PLTN) and Recurrent Neural Netwrok(RNN) for an approximator of the plant and used these approximators in calculating the input from the feedback linearization controller. Combining the above two controllers gives a result of better performance than the case which uses only a PI controller Each control result of PLTN and RNN is given.

  • PDF

Performance Comparison of Recurrent Neural Networks and Conditional Random Fields in Biomedical Named Entity Recognition (의생명 분야의 개체명 인식에서 순환형 신경망과 조건적 임의 필드의 성능 비교)

  • Jo, Byeong-Cheol;Kim, Yu-Seop
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.321-323
    • /
    • 2016
  • 최근 연구에서 기계학습 중 지도학습 방법으로 개체명 인식을 하고 있다. 그러나 지도 학습 방법은 데이터를 만드는 비용과 시간이 많이 필요로 한다. 본 연구에서는 주석 된 말뭉치를 사용하여 지도 학습 방법을 사용 한다. 의생명 개체명 인식은 Protein, RNA, DNA, Cell type, Cell line 등을 포함한 텍스트 처리에 중요한 기초 작업입니다. 그리고 의생명 지식 검색에서 가장 기본과 핵심 작업 중 하나이다. 본 연구에서는 순환형 신경망과 워드 임베딩을 자질로 사용한 조건적 임의 필드에 대한 성능을 비교한다. 조건적 임의 필드에 N_Gram만을 자질로 사용한 것을 기준점으로 설정 하였고, 기준점의 결과는 70.09% F1 Score이다. RNN의 jordan type은 60.75% F1 Score, elman type은 58.80% F1 Score의 성능을 보여준다. 조건적 임의 필드에 CCA, GLOVE, WORD2VEC을 사용 한 결과는 각각 72.73% F1 Score, 72.74% F1 Score, 72.82% F1 Score의 성능을 얻을 수 있다.

  • PDF

Using CNN-LSTM for Effective Application of Dialogue Context to Emotion Classification (CNN-LSTM을 이용한 대화 문맥 반영과 감정 분류)

  • Shin, Dong-Won;Lee, Yeon-Soo;Jang, Jung-Sun;Rim, Hae-Chang
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.141-146
    • /
    • 2016
  • 대화 시스템에서 사용자가 나타내는 발화에 내재된 감정을 분류하는 것은, 시스템이 적절한 응답과 서비스를 제공하는데 있어 매우 중요하다. 본 연구에서는 대화 내 감정 분류를 하는데 있어 직접적, 간접적으로 드러나는 감정 자질을 자동으로 학습하고 감정이 지속되는 대화 문맥을 효과적으로 반영하기 위해 CNN-LSTM 방식의 딥 뉴럴 네트워크 구조를 제안한다. 그리고 대량의 구어체 코퍼스를 이용한 사전 학습으로 데이터 부족 문제를 완화하였다. 실험 결과 제안하는 방법이 기존의 SVM이나, 단순한 RNN, CNN 네트워크 구조에 비해 전반전인 성능 향상을 보였고, 특히 감정이 있는 경우 더 잘 분류하는 것을 확인할 수 있었다.

  • PDF

RNN Sentence Embedding and ELM Algorithm Based Domain and Dialogue Acts Classification for Customer Counseling in Finance Domain (RNN 문장 임베딩과 ELM 알고리즘을 이용한 금융 도메인 고객상담 대화 도메인 및 화행분류 방법)

  • Oh, Kyo-Joong;Park, Chanyong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.220-224
    • /
    • 2017
  • 최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.

  • PDF

A Dialogue System using CNN Sequence-to-Sequence (CNN Sequence-to-Sequence를 이용한 대화 시스템 생성)

  • Seong, Su-Jin;Sin, Chang-Uk;Park, Seong-Jae;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.151-154
    • /
    • 2018
  • 본 논문에서는 CNN Seq2Seq 구조를 이용해 한국어 대화 시스템을 개발하였다. 기존 Seq2Seq는 RNN 혹은 그 변형 네트워크에 데이터를 입력하고, 입력이 완료된 후의 은닉 층의 embedding에 기반해 출력열을 생성한다. 우리는 CNN Seq2Seq로 입력된 발화에 대해 출력 발화를 생성하는 대화 모델을 학습하였고, 그 성능을 측정하였다. CNN에 대해서는 약 12만 발화 쌍을 이용하여 학습하고 1만 발화 쌍으로 실험하였다. 평가 결과 제안 모델이 기존의 RNN 기반 모델에 비해 우수한 결과를 보였다.

  • PDF

Parameter Estimation of Recurrent Neural Equalizers Using the Derivative-Free Kalman Filter

  • Kwon, Oh-Shin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.267-272
    • /
    • 2010
  • For the last decade, recurrent neural networks (RNNs) have been commonly applied to communications channel equalization. The major problems of gradient-based learning techniques, employed to train recurrent neural networks are slow convergence rates and long training sequences. In high-speed communications system, short training symbols and fast convergence speed are essentially required. In this paper, the derivative-free Kalman filter, so called the unscented Kalman filter (UKF), for training a fully connected RNN is presented in a state-space formulation of the system. The main features of the proposed recurrent neural equalizer are fast convergence speed and good performance using relatively short training symbols without the derivative computation. Through experiments of nonlinear channel equalization, the performance of the RNN with a derivative-free Kalman filter is evaluated.

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

Image Caption Generation using Recurrent Neural Network (Recurrent Neural Network를 이용한 이미지 캡션 생성)

  • Lee, Changki
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.878-882
    • /
    • 2016
  • Automatic generation of captions for an image is a very difficult task, due to the necessity of computer vision and natural language processing technologies. However, this task has many important applications, such as early childhood education, image retrieval, and navigation for blind. In this paper, we describe a Recurrent Neural Network (RNN) model for generating image captions, which takes image features extracted from a Convolutional Neural Network (CNN). We demonstrate that our models produce state of the art results in image caption generation experiments on the Flickr 8K, Flickr 30K, and MS COCO datasets.

On Neural Network Adaptive Equalizers for Digital Communication

  • Hongrui Jiang;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10A
    • /
    • pp.1639-1644
    • /
    • 2001
  • Two decision feedback equalizer structures employing recurrent neural network (RNN) used for non-linear channels with severe intersymbol interference (ISI) and non-linear distortion are proposed in this paper, which skillfully put the traditional decision feedback structure for linear channels equalization into RNN, replace decision feedback signal with training signal in the learning process and adaptively adjust the learning step. Simulative results of the first type of two new equalizer structures have shown that it has better equalization performances than traditional recurrent neural network equalizer (RNNE) under the same condition.

  • PDF

End-to-end Document Summarization using Copy Mechanism and Input Feeding (Copy Mechanism과 Input Feeding을 이용한 End-to-End 한국어 문서요약)

  • Choi, Kyoungho;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.56-61
    • /
    • 2016
  • 본 논문에서는 Sequence-to-sequence 모델을 생성요약의 방법으로 한국어 문서요약에 적용하였으며, copy mechanism과 input feeding을 적용한 RNN search 모델을 사용하여 시스템의 성능을 높였다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, input feeding과 copy mechanism을 포함한 모델이 형태소 기준으로 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.

  • PDF