• Title/Summary/Keyword: river width

Search Result 289, Processing Time 0.033 seconds

Analysis of Longitudinal Dispersion Coefficient : Part I. Comparative Study of Existing Equations for Dispersion Coefficient (종확산계수에 관한 연구 : I. 기존 종확산계수 추정식 비교)

  • 서일원;정태성
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.205-216
    • /
    • 1995
  • Existing equations for dispersion coefficient are analyzed in depth to select proper dispersion coefficient which can represent dispersion characteristics of natural streams. Several equations are tested with measured data which were collected in 26 streams in the United States. Findings of this study are as follows. Elder's equation should not be used to estimate dispersion coefficient of the one-dimensional dispersion model because it underestimates significantly. McQuivey and Keefer's equation is overestimating, whereas Magazine et al.'s equation is underestimating. However, Iwasa and Aya's equation predicts relatively well. Fischer's equation is generally overestimating. Liu's equation predicts quite well. The performance of Liu's equation is the best of all especially in terms of accuracy. However, Liu's equation is generally overestimating in case of large river because the square of channel width is included in the equation. Therefore, it is recommended not to use Liu's equation in case of large rivers, especially rivers of which channel width is larger than 200m.

  • PDF

Development of Fishway Assessment Model based on the Fishway Structure, Hydrology and Biological Characteristics in Lotic Ecosystem

  • Choi, Ji-Woong;Park, Chan-Seo;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.71-80
    • /
    • 2016
  • The main goal of this study is to develop a multi-metric fishway assessment model (Mm-FA) and evaluate the efficiency of fishway. The Mm-FA model has three major fishway components with nine metrics: structural characteristics, hydraulic/hydrologic features, and biological attributes. The model was developed for diagnosing and assessing fishway efficiency and tested to Juksan Weir at the Yeongsan River Watershed. Structural characteristics of fishway included slope of the fishway (M1), ratios of fishway width to stream width (M2), and the proportion of orifice clogging and orifice size (M3). Hydraulic/hydrologic characteristics included depth of fishway entrance head (M4), depth of exit tail (M5), and current velocity of inner fishway (M6). Biological characteristics included fish species ratio of inner fishway to upper-lower weir (M7), fish length distribution (M8), and the proportion of migratory fish species to the total number of species (M9). Overall, the assessment of fishway efficiency showed the total score of the Mm-FA model was 25 in the Juksan Weir, indicating "good condition" by the criteria of the five-level classification system. The Mm-FA model may be used as a key tool for the assessment of fishway efficiency, especially on the 16 weirs constructed for the "Four Rivers Restoration Project" after a partial calibration of Mm-FA model.

Restoration Study of Woljeong-gyo (월정교의 복원적 고찰)

  • Nam, Si-Jin
    • Journal of architectural history
    • /
    • v.16 no.4
    • /
    • pp.77-93
    • /
    • 2007
  • According to documentary records Woljeong-gyo(stone bridge) is built in 760(Silla the 35th King Gyeongdeok 19) and used as original function until 1280(Goryeo the 25th King Chungryeol 6) as Chunyang-gyo. But in those days "Donggyeongjapgi" was published in 1669(Joseon Hyeonjong 10) we assume that it was lost its original function. There are four pier in the type of a ship with the same distance in the middle of river. We can see it is the site of bridge as parts of stonework of bridge are remained. In 1975 the abutments and piers are surveyed and in 1984 stone investigation twice and excavation three times which were to plan restoration were done. Now the restoration of abutments both ends are worked. For restoration of Woljeong-gyo studied documentary records and excavation recoeds were collected and examined. It helped to see the bridge in southern China twice to restore the bridge. Unearthed articles such as yeonham(a kind of member to support roof tiles) and giwa(roof tile) gave decisive clues to assume upper structure of the bridge and from Chinese bridges are helped to type of the bridge. It is certain Woljeong-gyo was ranggyo which means that upper structure was made with wooden members and the stone piers shaped of a ship below and near the abutments both ends another buildings were. Youngjocheok(the architectural measure) of this bridge is similar to gokcheok(the metal measure, 301.84mm) used now that the length of piers is 46choek(尺), the width of that is 9choek(尺), the length between two piers is 42choek(尺), the length between abutment and pier is 38choek(尺). Also we can see that entirely the length of the bridge is 210choek(尺), width is 40choek(尺).

  • PDF

The Stability Evaluation of River Embankment for a Piping Phenomenon (하천제방의 세굴에 대한 안정성 연구)

  • Lee, Song;Park, Hyung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2003
  • In this reseach, a seepage test is carried out for three kinds of soil using a upward seepage equipment. Reliability about the existing method of pipining investigation were verified making an estimate of the critical velocity, the critical hydraulic gradient, and hydraulic conductivity and so on. Also, sensitive analyses were carried out using Plaxis that is FEM Program about design factors of scour. The height of core had a big infulence on the hydraulic gradient of the embankment's lower part in the result of sensitive anaylsis. Also, second only to the height of core, and the slope of embankment, the width of crest had influence on scour. However, the change of hydraulic gradient in the effluent gateway had a little influence on the crest width of core. Using these results of sensitive analysis on designing, hydraulic gradient in the effluence gateway turned out to be reducing by altering design factors that change of sensitiveness is big, in case of the hydraulic gradient bigger than the standard hydraulic gradient.

Determination of Criteria for the Evaluation of Flow Width-Channel Width Ratio for River Environment (하천환경성 평가를 위한 수면폭-하폭비 평가 기준 결정)

  • Lee, Choon Ho;Lee, Tae Geun;Lim, Dong Hwa;Sim, Gyoo Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.406-406
    • /
    • 2020
  • 본 연구에서는 하도에 대한 하천환경성을 평가하기 위해 관련연구 및 환경관련사업 분석을 통해 환경기능을 대표할 수 있는 환경생태수심, 수면폭-하폭비, 횡단구조물, 수질 등 4가지 요소를 결정요소로 선정하였다. 각각의 결정요소에 대해서 관련지침, 연구, 설계기준 등을 토대로 평가 기준을 설정하였다. 이 중 수면폭-하폭비에 대한 정량적 기준이 명확하지 않아 자연하천과 도시하천을 대상으로 환경생태유량 적용을 통한 수리분석을 실시하였으며 분석 결과를 통해 평가 기준을 결정하였다. 자연하천으로는 자연성을 비교적 잘 유지하고 있는 평창강, 영강, 남강을 포함한 8개 하천, 도시하천은 안양천, 중랑천을 포함한 24개 하천을 대상으로 하였다. 분석결과 자연하천은 도시하천에 비해 수면폭-하폭비가 크고, 분포가 고른 것으로 나타났으며 도시하천은 수면폭-하폭비가 자연하천과 비교하여 작은 구간이 많으며 각종 하천사업으로 인해 분포가 고르게 분포하지 못하는 것으로 나타났다. 또한, 도시하천 중 복개구간을 포함하는 하천은 인위적인 하폭 및 수면폭 형성으로 인해 수면폭-하폭비가 큰 것으로 분석되었다. 분석결과를 종합하여 하도의 환경성 평가를 위한 수면폭-하폭비 기준은 0.33으로 결정하였으며 이를 특정하천에 활용할 경우, 측점별 수면폭-하폭비를 산정하고, 하천 전체 연장 대비 해당 값에 만족하는 구간연장을 점수화 하여 수면폭-하폭비 평가 결과로 활용하도록 하였다. 본 연구의 성과는 하천환경성을 정량적으로 평가함으로써 향후 하도계획 수립 시 하천환경성 증진을 위한 기반자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

A Study on the Cultivation Processes and Settlement Developments on the Mangyoung River Valley (만경강유역의 개간과정과 취락형성발달에 관한 연구)

  • NamGoong, Bong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.37-87
    • /
    • 1997
  • As a results of researches on the cultivation processes and settlement developments on the Mangyoung river valley as a whole could be have four 'Space-Time Continuity' through a [Origin-Destination] theory model. On a initial phases of cultivation, the cultivation process has been begun at mountain slopes and tributory plains in upper part of river-basin from Koryo Dynasty to early Chosun Dynasty. At first, indigenous peasants burned forests on the mountain slopes for making 'dryfield' for a cereal crops. Following population increase more stable food supply is necessary facets of life inducing a change production method into a 'wetfield' in tributory plains matching the population increase. First sedentary agriculture maybe initiated at this mountain slopes and tributory plains on upper part of river basin through a burning cultivation methods. Mountain slopes and tributory plains are become a Origin area in cultivation processes. It expanded from up to down through the valleys with 'a bits of land' fashion in a steady pace like a terraced fields expanded with bit by bit of land to downward. They expanded their land to the middle part of river basin in mid period of Chosun Dynasty with dike construction techniques on the river bank. Lower part of river cultivated with embankment building techniques in 1920s and then naturally expanded to the tidal marshes on the estuaries and river inlets of coastal areas. 'Pioneer fringes' are consolidated at there in modern times. Changes in landscapes are appeared it's own characters with each periods of time. Followings are results of study through the Mangyoung river valley as a whole. (1) Mountain slopes and tributory plains on the upper part of river are cultivated 'dryfields' by indigenous peasants with Burning cultivation methods at first and developed sedentary settlements at the edges of mountain slopes and on the river terrace near the fields. They formed a kind of 'periphery-located cluster type' of settlement. This type of settlement are become a prominant type in upper part of river basin. 'Dryfields' has been changed into a 'wetfields' at the narrow tributory plains by increasing population pressure in later time. These wetfields are supplied water by Weir and Ponds Irrigation System(제언수리방법). Streams on the tributory plains has been attracted wetfields besides of it and formed a [water+land] complex on it. 'Wetfields' are expanded from up to downward with a terraced land pattern(adder like pattern, 붕전) according to the gradient of valley. These periphery located settlements are formed a intimate ecological linkage with several sets of surroundings. Inner villages are expanded to Outer villages according to the expansion of arable lands into downward. (2) Mountain slopes and tributory plains expanded its territory to the alluvial deposited plains on the middle part of river valley with a urgent need of new land by population increase. This part of alluvial plains are cultivated mainly in mid period of Chosun Dynasty. Irrigation methods are changed into a Dike Construction Irrigation method(천방수리방법) for the control of floods. It has a trend to change the subjectives of cultivation from community-oriented one who constructed Bochang along tributories making rice paddies to local government authorities who could be gather large sums of capitals, techniques and labours for the big dike construction affairs. Settlements are advanced in the midst of plains avoiding friction of distances and formed a 'Centrallocated cluster type' of settlements. There occured a hierarchical structures of settlements in ranks and sizes according merits of water supply and transportation convenience at the broad plains. Big towns are developed at there. It strengthened a more prominant [water+land] complex along the canals. Ecological linkages between settlements and surroundings are shaded out into a tiny one in this area. (3) It is very necessary to get a modern technology of flood control at the rivers that have a large volume of water and broad width. The alluvial plains are remained in a wilderness phase until a technical level reached a large artificial levee construction ability that could protect the arable land from flood. Until that time on most of alluvial land at the lower part of river are remained a wilderness of overgrown with reeds in lacks of techniques to build a large-scale artificial levee along the riverbank. Cultivation processes are progressed in a large scale one by Japanese agricultural companies with [River Rennovation Project] of central government in 1920s. Large scale artificial levees are constructed along the riverbank. Subjectives of cultivation are changed from Korean peasants to Japanese agricultural companies and Korean peasants fell down as a tenant in a colonial situation of that time in Korea. They could not have any voices in planning of spatial structure and decreased their role in planning. Newly cultivated lands are reflected company's intensions, objectives and perspectives for achieving their goals for the sake of colonial power. Newly cultivated lands are planned into a regular Rectangular Block settings of rice paddies and implanted a large scale Bureaucratic-oriented Irrigation System on the cultivated plains. Every settlements are located in the midst of rice paddies with a Central located Cluster type of settlements. [water+land] complex along the canal system are more strengthened. Cultivated space has a characters of [I-IT] landscapes. (4) Artificial levees are connected into a coastal emnankment for a reclamation of broad tidal marshes on the estuaries and inlets of rivers in the colonial times. Subjectives of reclamation are enlarged into a big agricultural companies that could be acted a role as a big cultivator. After that time on most of reclamation project of tidal marshes are controlled by these agricultural companies formed by mostly Japanese capitalists. Reclaimed lands on the estuaries and river inlets are under hands of agricultural companies and all the spatial structures are formed by their intensions, objectives and perspectives. They constructed a Unit Farming Area for the sake of companies. Spatial structures are planned in a regular one with broad arable land for the rice production of rectangular blocks, regular canal systems and tank reservoir for the irrigation water supply into reclaimed lands. There developed a 'Central-located linear type' of settlements in midst of reclaimed land. These settlements are settled in a detail program upon this newly reclaimed land at once with a master plan and they have planned patterns in their distribution, building materials, location, and form. Ecological linkage between Newly settled settlemrnts and its surroundings are lost its colours and became a more artificial one by human-centred environment. [I-IT] landscapes are become more prominant. This region is a destination area of [Origin-Destination] theory model and formed a 'Pioneer Fringe'. It is a kind of pioneer front that could advance or retreat discontinously by physical conditions and socio-cultural conditions of that region.

  • PDF

Impact of a Large Water Control on Environment of Surrounding Cultural Heritage (대규모 치수(治水) 사업이 주변 문화재 환경에 미치는 영향)

  • Jeong, Seon Hye;Kim, Si Hyun;Han, Ye Bin;Lee, Min Young;Lee, Hyun Ju;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.395-402
    • /
    • 2016
  • The impact of a large water control project on surrounding environment(temperature and relative humidity, precipitation, wind speed, present weather and visibility) was monitored. The survey have targeted on Silleuksa temple which is located in the waterside. The number of foggy days emerged as an environmental factor that can cause damage to cultural heritage. Under construction of weir since 2011, monthly relative humidity of Yeoju and Icheon was dropped to 9.6%. It depends on decrease in the number of raining days and precipitation of each year. Silleuksa temple is contiguous to Namhan River and only 100 m away from the waterside. Average wind speed is 0.5 m/s. Silleuksa has a site environmental factors which is often foggy. The number of foggy days of Silleuksa temple declined to 53 days soon after weir's completion. In case of fog, relative humidity of outside was higher than that of outside and inside of Josadang Shrine. Relative humidity difference of outside and inside of Josadang Shrine was 5.4% on average. Relative humidity of the number of foggy days is 6.3% higher on average than that of fine days. The width and dimensions of Namhan River increased by 1.45 times after weir's construction. It can change the number of foggy days. A long-term monitoring is positively necessary on fog occurrence and relative humidity.

Numerical Sensitivity Analysis on Hydraulic Characteristics by Dredging in Upstream of Abrupt Expansion Region (급확대 구간에서 준설영향으로 인한 상류 수리특성 변화에 대한 민감도 분석)

  • Jeong, Seok Il;Ryu, Kwang Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.46-52
    • /
    • 2017
  • Sediment exchange in river has been affected by artificial changes such as dredging and abnormal climate changes like intense rainfall. Over last decades in Korea, there were many constructions, restoration or rehabilitation in rivers. Therefore, deposition and erosion become more actively occurred than before, which may threaten the river safety such as flood defense. For safety's sake, the dredging of river bed, which is considered as the most typical measure, has been increased to extend hydraulic conveyance compared with previous conditions. However, since it might change the sediment mechanism, there would be another risk at which unexpected side effects such as headward erosion could be occurred. Particularly, sedimentation at abrupt expansion region is able to lead to hydraulic characteristics like water elevation in the upstream region in the beginning of dredging, which, however, has been barely studied in this field. Therefore in this study, the relationship between sediment mechanism at dredging section and hydraulic characteristics in upstream region were presented through numerical simulations in the idealized abruptly widen channel using Delft3D. The ideal channel of 2,000 m length with each side angle of 45 degrees at abruptly widen expansion region was employed to consider the sediment angle of repose. The sensitivity analysis was performed on the dimensionless factors consisted of upstream and downstream depths($h_u$, $h_d$), width($w_u$, $w_d$), water level(H), flow rate(Q) and discharge of sediment($Q_s$). And the sedimentation amount at dredging and the upstream hydraulic characteristics were investigated through that analysis. It showed that $h_d/h_u$, $H/h_u$ and $w_d/w_u$ were more influential in sequence of effect on sedimentation amount, while $h_d/h_u$, $w_d/w_u$ and $H/h_u$ on upstream region. It means that $h_d/h_u$ was revealed as the most significant factors on sedimentation, also it would most highly affect the rising of water level upstream.

An Experimental Study for the Empirical Equation to Quantify the Subsidence of Riprap Scour Protection at Downstream of Vertical Drop Structures (연직낙차공 하류부 사석보호공 침하량 산정식에 관한 실험 연구)

  • Kim, Chang-Sung;Kang, Joon-Gu;Yeo, Hong-Koo;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.433-443
    • /
    • 2010
  • Drop structures that span the entire width of channels are installed to alleviate channel grades and have been constructed widely in Korean rivers. Aprons are normally installed and integrated with drop structures and bed protections are added on the downstream part of aprons to protect both drop structures and aprons. Scour occurring on aprons is reported to provide various habitats such as ripples and pools in natural rivers. This study focuses on the scour characteristics on an apron integrated with a drop structure and the subsidence of a riprap protection. The scour depth on the downstream part of the drop structure is found to increase with the increase of unit discharge; however, to decrease as the tail water depth gets deeper. Based on the experimental measurements, the subsidence of the riprap scour protection is calculated with respect to the thickness of riprap. Finally, the dimensionless empirical equation to quantify the subsidence of the riprap scour protection without filters at downstream of the vertical drop is suggested.