• Title/Summary/Keyword: river environment

Search Result 3,093, Processing Time 0.026 seconds

Geochemical investigation of stream sediment and water of the Anyang river: Environmental implication (안양천 하천수 및 퇴적물의 지구화학 예비조사와 환경적 의미)

  • 이상훈;문지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.151-155
    • /
    • 1998
  • The Anyang river drains a highly polluted industrial area and enters the lower part of Han river. In this preliminary study for the comprehensive understanding of geochemical behaviour of elements in the stream sediments and its implications on the river chemistry and ecology, major and trace elements in stream sediments, suspended solids and stream water were analysed to look into elemental enrichments and elemental behaviour with distance from upper part of the stream. Chemical analyses of the stream sediments show enrichements of heavy metals including Cr, Zn, Ni, Co between 10 to 100 times. Other trace elements, Cd, Pb and As are also enriched between several to 10 times, based on relative ratio with Al in fresh rock. Chemical analyses of the sediments, suspended solids and water show indications of anthroporgenic impact for the heavy metal accumulation. It was nortworth Hg is detected between 2 and 4 ppb in the water.

  • PDF

Evaluation of pumping capacity of radial collector wells using Milojevic's equation in the National River Watershed, Korea (Milojevic 경험식을 활용한 주요 국가하천 유역에서 방사형집수정의 강변여과수 취수가능량 평가)

  • Oh, Se-Hyoung;Jeong, Jae-Hoon;Park, Sang-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.10-20
    • /
    • 2012
  • The pumping capacity of riverbank filtration using radial collector wells at the Geum, Yeongsan, Seomjin, and Nakdong rivers was evaluated using Milojevic's equation. Assessment of the radial collector wells' pumping capacity in riverbank filtration was carried out using a case study in which one set of collector wells is installed in the watershed of each river. Nakdong River was evaluated to have the highest pumping capacity for riverbank filtration. The areas capable of producing over 10,000 $m^3$ per day were found mostly in the Nakdong River.

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

Status of Water Pollution of Gyeongan River, Korea (경안천의 오염현황)

  • Yi, Dong-Seok;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.698-702
    • /
    • 2004
  • At five stations in Gyeongan River, a tributary of Lake Paldang, physicochemical and biological environmental factors of water, particulate matters, and sediments were investigated biweekly from April 11 to December 22 in 2001. The studied area was characterized as a stream-lake system. The system is primarily referred to a place where the environmental factors had considerably changed depending on the amount of precipitation. As a result, the river turned out to be strongly eutrophicated. Also, some characteristics of the water and the particulate matters at midstream such as average concentrations of conductivity, nutrients, and chlorophyll $\alpha$ were higher than the characteristics of up and down-stream. However, the concentrations of organic matters and ratio of clay and silt of the midstream were determined to be higher than up and down-stream sediments. As the result of the factor analysis, 4 major different patterns for environmental factors are found from samples of water, particulate matters, and sediments.

Monitoring of Indicator Microorganism Concentrations of River Sediment and Surface Water in the Geum River Basin (금강 수계 내 하천퇴적물 및 지표수의 지표미생물 농도분포)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Characterization of sediment quality is important for the proper management of surface water quality, yet sediment has not been monitored sufficiently. In this study, fecal indicator microorganism concentrations of sediments in the Geum River Basin were monitored. Sampling was carried out at one paddy field, one lakeshore and five monitoring stations in the lower reach of the Geum River Basin. Surface waters and sediments were sampled four times during rainy season. Total coliform concentrations of sediments were 12 times higher in average to those of surface waters while E. coli concentrations of sediments were six times higher. No correlation found between indicator microorganism concentration between surface waters and sediments.

Water Quality Modeling of the Eutrophic Transition Zone in a River-Type Reservoir Paldang (부영양화된 하천형 호소(팔당호) 전이대의 수질모델링)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.429-440
    • /
    • 2014
  • This study was conducted to investigate the main cause of water quality deterioration during the spring season in the transition zone between the South Han River and the river-reservoir Paldang. A water quality model modified from QUAL2E (U.S.EPA) was used, and the model showed that eutrophication and algal production in the low flow season affected about 60% of the organic pollution at the downstream of the South Han River. This result means that phosphorus control is prior to external organic material management to ameliorate the deterioration of water quality in the water body.

Canonical Correspondence Analysis of Riparian Vegetation in Mankyeong River, Jeollabuk-do (서열법에 의한 만경강 하천식생의 분석)

  • 김영식;김창환;이경보
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1031-1037
    • /
    • 2002
  • CCA (Canonical Correspondence Analysis) was used so as to analyze the relation between vegetation and soil environment of Mankyeong river located in Jeollabuk-do. Vegetation survey consulted 1:5,000 topographical map, set up 30 plot and analyzed from June, 2001, to september, 2001. Plant communities of Mankyeong river was investigated by phytosocialogical method. The species composition of plant communities showed high correlation to soil pH, soil organic matter, $P_2$$O_5$, total nitrogen, EC, when they were analyed by CCA. According to the results of CCA hydrophyte communities were distributed in the region that high pH. But the vegetation of disturbed site and wetland plants were distributed in a good nutrients.

Soundscape Design Process and it's Application on Gwangju River (광주천 사례를 통한 사운드스케이프 디자인의 프로세스 적용)

  • Jang, Gil-Soo;Lee, Sang-Jun;Kook, Chan
    • KIEAE Journal
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2006
  • The word "soundscape" proposed by Canadian composer R. Murray Schafer is now became very popular. So various soundscape design based on soundscape idea are carried on worldwide for acoustic ecology. Also in Korea, several soundscape design were made for the public spaces such as river, park and bridge but, basic concept behind soundscape design was not reflected and studied sufficiently. In that sense, this study aims to arrange the concept of soundscape design process and to review the design proposals of Gwangju River. In this process, the reproduction concept of soundscape, natural sound, light with sound, cultural and historical sound and etc. were classified and the final design was proposed to recover the natural environment and harmonize the sound with surroundings as creative soundscape.

The Estimation of Soil Loss in the Buffer Zone of Guem River using a Simulation of Future Climate Change (미래기후변화를 반영한 금강 수변 구역에서의 표토 유실량 예측)

  • Lee, Dal-Heui;Chung, Sung-Lae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.30-36
    • /
    • 2014
  • The objective of this study is to estimate soil loss in the buffer zone of Guem river with future climate change simulation. Revised Universal Soil Loss Equation (RUSLE) model was used for the estimation of soil loss at the buffer zone of Guem river. As results of simulations, the area of the maximum soil loss potential was estimated as the Cheongsung-myeon Okchun-gun Chungcheongbuk-do. The soil losses were estimated to be 106.67 and 103.00 ton/ha/yr for the 2020 segi (2015-2025) and 2040 segi (2035-2045) in the Cheongsung-myeon area, respectively. Also, the estimated average values of soil losses in the Cheongsung-myeon with future climate change was 110.78 ton/ha/yr.

Analysis of Correlation with Cross Sectional Area of Flow and Flow Rate Variation of Discharge Measurement Point in the Upper Stream of Seomjin River (섬진강상류 유량측정지점의 유수단면적과 유량변화에 따른 상관관계 분석)

  • Song, KwangDuck;Kim, KapSoon;Lee, DongJin;Ham, SangIn;Kim, DaeYoung;Oh, TaeYoun;Lee, JaeChoon;Lim, ByungJin
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.94-102
    • /
    • 2013
  • This study was carried out to determine the variation of the water level and crosssection area for investigating changes of stream foreland, and to determine the correlation between the average flow velocity and cross-section area so as to understand the hydrological characteristics of the stream. The slope of the cross-sectional area was changed in water levels of 0.6~1.0 m and 1.8~2.0 m. The first change occurred in the low-water level season, and the second change occurred in the high-water level seasons. It is assumed that the changes occurred due to the geological transfigure. The correlation between the cross-sectional area and the average flow velocity was 0.22~0.86 in the exponential equation and 0.20~0.87 in the linear equation. The low water level had a higher correlation than the high water level, and free weirs in the upper stream showed a very low correlation. Therefore, this study provides novel information for the management of water quality in the riverside, using correlation equations of the water level and flow velocity with the cross section area.