• Title/Summary/Keyword: river basins

Search Result 433, Processing Time 0.021 seconds

Estimation of Fractal Dimension According to Stream Order in the leemokjung Subbasin (이목정 소유역의 하천차수를 고려한 프랙탈 차원의 산정)

  • Go, Yeong-Chan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.587-597
    • /
    • 1998
  • Researchers have suggested that the fractal dimension of the stream length is uniform in all the streams of the basin and the estimates of the fractal dimension are in between 1.09 and 1.13 which may be considerably large values. In this study, the fractal dimension for the Ieemokjung subbasin streams in the Pyungchang River basin which is one of the IHP representative basins in Korea are estimated for each stream order using three scale maps of a 1/50,000, 1/25,000, and 1/5,000. As a result, the fractal dimension of the stream length is different by stream order and the fractal dimension of all streams shows a lower value in comparison to that of the previous studies. As a result of the fractal dimension estimation for the Ieemokjung subbasin streams, we found that the fractal dimension of the stream length shows different estimates in stream orders. The fractal dimension of 1st and 2nd order stream is 1.033, and the fractal dimension of 3rd and 4th order stream is 1.014. This result is different from the previous studies that the fractal dimension of the stream length is uniform in all streams of the basin. The fractal dimension for a whole stream length is about 1.027. Therefore, the previous estimates of 1.09 and 1.13 suggested as the fractal dimension of the stream length may be overestimated in comparison with estimated value in this study.

  • PDF

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

Estimation of design floods for ungauged watersheds using a scaling-based regionalization approach (스케일링 기법 기반의 지역화를 통한 미계측 유역의 설계 홍수량 산정)

  • Kim, Jin-Guk;Kim, Jin-Young;Choi, Hong-Geun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.769-782
    • /
    • 2018
  • Estimation of design floods is typically required for hydrologic design purpose. Design floods are routinely estimated for water resources planning, safety and risk of the existing water-related structures. However, the hydrologic data, especially streamflow data for the design purposes in South Korea are still very limited, and additionally the length of streamflow data is relatively short compared to the rainfall data. Therefore, this study collected a large number design flood data and watershed characteristics (e.g. area, slope and altitude) from the national river database. We further explored to formulate a scaling approach for the estimation of design flood, which is a function of the watershed characteristics. Then, this study adopted a Hierarchical Bayesian model for evaluating both parameters and their uncertainties in the regionalization approach, which models the hydrologic response of ungauged basins using regression relationships between watershed structure and model. The proposed modeling framework was validated through ungauged watersheds. The proposed approach have better performance in terms of correlation coefficient than the existing approach which is solely based on area as a predictor. Moreover, the proposed approach can provide uncertainty associated with the model parameters to better characterize design floods at ungauged watersheds.

Analysis of the Implementation Effect of Total Water Load Management System Using Load Duration Curves in Sapgyo Watershed (부하지속곡선을 이용한 삽교천 유역의 오염총량관리제도 시행효과 분석)

  • Lee, Eunjeong;Kim, Taegeun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.536-548
    • /
    • 2019
  • In order to quantify the effect of the newly established the Total Water Load Management System in Sapgyo watershed, this study predicted the achievement of the target water quality at each unit watershed and the water quality according to the flow section. The HSPF model, which is the watershed runoff model, was constructed and operated based on 2015, and the water quality was predicted by inputting the loads in final target year(2030). The Load Duration Curve (LDC) was created using the simulated results of base year and target year. As a result of plotting water quality by flow conditions, it was simulated to be close to the BOD target with a difference of 0.1 ~ 0.2 mg/L in all three watersheds during the mid-range flow interval (40 ~ 60%). In case of T-P, although the target water quality was not set, the water quality was improved by Cheonan A 46%, Kokgyo A 29% and Namwon A 25%. The Muhan and Sapgyo river basins meet the target grade of middle-watershed standards. The improvement effect will be positive, as water quality, which achieves the target of Total Load Management System and the target grade of the middle-watershed standards will be expected to flow into the Sapgyo lake.

Evaluation of Groundwater Flow for the Kap-cheon Basin (갑천 유역의 지하수 유동 평가)

  • Hong, Sung-Hun;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.431-446
    • /
    • 2007
  • Groundwater flow in a basin is greatly affected by many hydrogeological and hydrological characteristics of the basin. A groundwater flow model for the Kap-cheon basin ($area=648.3km^2$) in the Geum river basin was established using MODFLOW by fully considering major features obtained from observed data of 438 wells and 24 streams. Furthermore, spatial groundwater recharge distribution was estimated employing accurately calibrated watershed model developed using SWAT, a physically semi-distributed hydrological model. Model calibration using observed groundwater head data at 86 observation wells yielded the deterministic coefficient of 0.99 and the water budget discrepancy of 0.57%, indicating that the model well represented the regional groundwater flow in the Kap-cheon basin. Model simulation results showed that groundwater flow in the basin was strongly influenced by such factors as topological features, aquifer characteristics and streams. The streams in mountainous areas were found to alternate gaining and losing steams, while the streams in the vicinity of the mid-stream and down-stream, especially near the junction of Kap-cheon and Yudeong-cheon, areas were mostly appeared as gaining streams. Analysis of water budget showed that streams in mountainous areas except for the mid-stream and up-stream of Yudeong-cheon were mostly fed by groundwater recharge while the streams in the mid and down-stream areas were supplied from groundwater inflows from adjacent sub-basins. Hence, it was concluded that the interactions between surface water-groundwater in the Kap-cheon basin would be strongly inter-connected with not only streams but also groundwater flow system itself.

The Estimation of Sand Dam Storage using a Watershed Hydrologic Model and Reservoir Routing Method (유역 수문모형과 저수지 추적기법을 연계한 샌드댐 저류량 산정)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Choi, Jung-Ryel
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.541-552
    • /
    • 2018
  • The implementation of drought measures in the upstream areas of river basins is seldom considered with respect to water supply. However, the demand for such measures is increasing rapidly owing to the occurrence of severe droughts, and interventions on streams and the water supply are needed. Physical interventions are an option to prevent streams from becoming dry and to maintain stream water flow, but dam construction is challenging because of environmental and ecological considerations. Here, a feasibility study was conducted to assess the potential effects of sand dams, which are widely used in arid regions in Africa. The SWAT-K model, which is a hydrologic model used for Korean watersheds, is used to estimate the flow rate of water in an ungauged watershed. The changes in water storage of the sand-dammed reservoir and in downstream flow rates are estimated for two types of sand dam (natural and dredged). The results show that sand dams are capable of increasing the downstream flow rate during normal conditions and of mitigating water supply problems caused by the withdrawal of water during drought periods.

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.

The Topographical Factors Affecting the Water Quality of Iwonchon Basin (이원천 유역의 하천수질에 미치는 지형요인)

  • 이호준;방제용
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.101-108
    • /
    • 1999
  • This survey was performed from March 1993 to March 1998, in order to clarify the relationships between water quality and topographical factor. The study sites were two reservoir basins; Kaesim and Jangchan in Iwon-myon, Okchon-gun, Chungcho'ngbukdo Province. Basin shape factors of Kaesim reservoir were at 0.030∼0.210 (mean value 0.090), those of Jangchan reservoir were at 0.217∼0.452 (mean value 0.325). The mean basin shape factor of Jangchan reservoir was 3.61 times larger than that of Kaesim reservoir because its stream width was narrower and mean stream length was shorter. In the correlation between distance from the source of stream (L) and basin area (A), Iwonchon basin was calculated as L=1.44A/sup 0.6/. Circularity ratio was 17.114 in Kaesim (22% of Kum River), and 7.444 in Jangchan. Elongation ratio was 0.357 in Kaesim, 0.636 in Jangchan and 0.282 in Kum River. Precipitation summation period of Jangchan was 1.54 times slower than that of Kaesim. Rainfall reaching time in each small basin was 337.53 min. in A'(Jangchan-ri) basin of Jangchan and 49.26 min in H (Iwon-ri) basin of Kaesim. In the relationship between watershed frequency (Df) and drainage density (Dd), the regression equation was Df=0.023Dd² in Kaesim and Df=0.189Dd² in Jangchan reservoir. As slope degree increased, DO became higher (Y/sub DO/=0.19X+6.5927, r=0.8l), but COD(Y/sub COD/=-0.2092X+9.7104, r=0.52) became lower. Total nitrogen was increased with the increase of basin shape factor and circularity ratio. Ratio of B/sub OD/ to COD was 1/1.2(Y/sub BOD/ = 1.2984 X/sub COD/-3.2004, r=0.9l).

  • PDF

Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data (강우량 및 호우피해 자료를 이용한 호우피해 등급기준 Matrix작성 기법 개발)

  • Jeung, Se Jin;Yoo, Jae Eun;Hur, Dasom;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.