• Title/Summary/Keyword: risky slope

Search Result 7, Processing Time 0.02 seconds

Study on Applicability of Slope Types to Permission Standard for Forestland Use Conversion (산지의 사면유형을 고려한 산지전용허가기준에 관한 연구)

  • CHOI, Jung-Sun;KWAK, Doo-Ahn;KWON, Soon-Duck;BAEK, Seung-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.145-157
    • /
    • 2018
  • Mountainous areas are 64% in Korea and are allowed to be used by the permission standards of the "Mountainous Districts Management Act". In the act, slope and elevation criteria are defined to regulate the use of vulnerable land parcels to disaster. However, the standards cannot represent topographical variation in a land parcel such as terrain relief. Therefore, the applicability of slope type standard as a permission standard was tested using Catena in this study. Based on the theoretical grounds, two slope types were analyzed as 'risky slope' with disaster risk. The slope types of landslides in Namwon City were analyzed that 'risky slope' types were distributed about 57%. This study analyzed the forestland parcels that could be used when applying the current permission standards and the parcels that were already used in Namwon City. The ratio of the 'risky slope' in the parcels was more than 50%. Therefore, it is necessary to prevent the mountain development in 'risky slope' by establishing permission standard related to slope types. In addition, this study suggested the ratio of 'risky slope' in the parcel for the permission standard for forestland use conversion.

A Study on Stability Evaluation and Numerical Analysis for Installing of Real-Time Monitoring System on Risky Road Cut Slope (위험절토사면의 안정성평가 및 상시계측시스템 설치를 위한 수치해석적 연구)

  • Choi, Ji-Yong;Lee, Jong-Hyun;Lee, Yeob-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1139-1146
    • /
    • 2009
  • Collapse of cut slope includes many uncertainties in view of the reason and time. So, in the past, risky cut slopes have been dealt after they've been collapsed through post-management measures. But recently, advanced disaster prevention system is required, and as a part of that RTMS(Real-Time Monitoring System) was developed. In this study, stability of risky cut slope was evaluated by site investigation. To grasp deformation behavior characteristics of slope, numerical analysis based on FEM was performed and using results of that, specific standards for installation of Real-Time Monitoring System were suggested.

  • PDF

A Study on Embankment Slope Management System (성토사면유지관리시스템 개발에 관한 연구)

  • Kim, Seung-Hyun;Kim, Hong-Gyun;Lee, Jung-Yup;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.749-758
    • /
    • 2010
  • Embankment Slope (or Fill Slope) is defined as artificial slope formed by the filling of soil or rocks on the original ground. Recently a lot of embankment failures and collapse has occurred due to the increase of torrential rainfall and typhoons. Embankment collapse has lead to a great loss of lives and property therefore there is a need to establish a systematic embankment slope management system that will handle the maintenance and repair of risky embankment slopes. The objective of this study is to establish an "Embankment Slope Management Method" for embankment slopes located along national highways all over Korea. The method for field investigation of embankment slopes was recommended and the system for investment priority determination was also developed. The factors that lead to the collapse of embankment slopes caused by natural calamities were also determined through the initial survey of embankment slopes located along river fronts and mountainous areas.

  • PDF

A Study on behavior of Slope Failure Using Field Excavation Experiment (현장 굴착 실험을 통한 사면붕괴 거동 연구)

  • Park, Sung-Yong;Jung, Hee-Don;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the occurrence of landslides has been increasing over the years due to the extreme weather event. Developments of landslides monitoring technology that reduce damage caused by landslide are urgently needed. Therefore, in this study, a strain ratio sensor was developed to predict the ground behavior during the slope failure, and the change in surface ground displacement was observed as slope failed on the field model experiment. As a result, in the slope failure, the ground displacement process increases the risk of collapse as the inverse displacement approaches zero. It is closely related to the prediction of precursor. In all cases, increase in displacement and reverse speed of inverse displacement with time was observed during the slope failure, and it is very important event for monitoring collapse phenomenon of risky slopes. In the future, it can be used as disaster prevention technology to contribute in reduction of landslide damage and activation of measurement industry.

Slope Failure Prediction through the Analysis of Surface Ground Deformation on Field Model Experiment (현장모형실험 기반 표층거동분석을 통한 사면붕괴 예측)

  • Park, Sung-Yong;Min, Yeon-Sik;Kang, Min-seo;Jung, Hee-Don;Sami, Ghazali-Flimban;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, one of the natural disasters, landslide is causing huge damage to people and properties. In order to minimize the damage caused by continuous landslide, a scientific management system is needed for technologies related to measurement and monitoring system. This study aims to establish a management system for landslide damage by prediction of slope failure. Ground behavior was predicted by surface ground deformation in case of slope failure, and the change in ground displacement was observed as slope surface. As a result, during the slope failure, the ground deformation has the collapse section, the after collapse precursor section, the acceleration section and the burst acceleration section. In all cases, increase in displacement with time was observed as a slope failure, and it is very important event of measurement and maintenance of risky slope. In the future, it can be used as basic data of slope management standard through continuous research. And it can contribute to reduction of landslide damage and activation of measurement industry.

Study on Conversion Permission Standard considering the Topography and Ecological Location of the Mountain Areas (산지 지형 및 생태적 입지를 고려한 산지이용기준 개발에 관한 연구)

  • CHOI, Jung-Sun;KWAK, Doo-Ahn;KWON, Soon-Duck
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.59-71
    • /
    • 2019
  • In Mountainous Districts Management Act of Korea Forest Service, slope and elevation criteria are operated to regulate the indiscriminate use of risky land parcels when forestland is converted to other land use types. However, there is a limitation in considering topographical variation with only such two indices in the land parcel. Therefore, in order to supplement insufficient criteria, the slope type standard was developed using Catena, and the ecological condition improved terrain standards. Firstly, the ratio of 'risky slope' in a target forestland parcel was defined to decrease the risk of disasters such as landslides. Secondly, the standard of the ecological location condition was proposed as ecological score by integrating age, diameter and soil depth classes in the target forestland parcels. Thereby, we could prepare reasonable standards that can reduce forestland disasters and ecological damages, as suggesting new topographical and ecological assessment methods for forestland use conversion.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.