• 제목/요약/키워드: risk quantification model

검색결과 50건 처리시간 0.03초

AN OVERVIEW OF RISK QUANTIFICATION ISSUES FOR DIGITALIZED NUCLEAR POWER PLANTS USING A STATIC FAULT TREE

  • Kang, Hyun-Gook;Kim, Man-Cheol;Lee, Seung-Jun;Lee, Ho-Jung;Eom, Heung-Seop;Choi, Jong-Gyun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.849-858
    • /
    • 2009
  • Risk caused by safety-critical instrumentation and control (I&C) systems considerably affects overall plant risk. As digitalization of safety-critical systems in nuclear power plants progresses, a risk model of a digitalized safety system is required and must be included in a plant safety model in order to assess this risk effect on the plant. Unique features of a digital system cause some challenges in risk modeling. This article aims at providing an overview of the issues related to the development of a static fault-tree-based risk model. We categorize the complicated issues of digital system probabilistic risk assessment (PRA) into four groups based on their characteristics: hardware module issues, software issues, system issues, and safety function issues. Quantification of the effect of these issues dominates the quality of a developed risk model. Recent research activities for addressing various issues, such as the modeling framework of a software-based system, the software failure probability and the fault coverage of a self monitoring mechanism, are discussed. Although these issues are interrelated and affect each other, the categorized and systematic approach suggested here will provide a proper insight for analyzing risk from a digital system.

Application of Dynamic Probabilistic Safety Assessment Approach for Accident Sequence Precursor Analysis: Case Study for Steam Generator Tube Rupture

  • Lee, Hansul;Kim, Taewan;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.306-312
    • /
    • 2017
  • The purpose of this research is to introduce the technical standard of accident sequence precursor (ASP) analysis, and to propose a case study using the dynamic-probabilistic safety assessment (D-PSA) approach. The D-PSA approach can aid in the determination of high-risk/low-frequency accident scenarios from all potential scenarios. It can also be used to investigate the dynamic interaction between the physical state and the actions of the operator in an accident situation for risk quantification. This approach lends significant potential for safety analysis. Furthermore, the D-PSA approach provides a more realistic risk assessment by minimizing assumptions used in the conventional PSA model so-called the static-PSA model, which are relatively static in comparison. We performed risk quantification of a steam generator tube rupture (SGTR) accident using the dynamic event tree (DET) methodology, which is the most widely used methodology in D-PSA. The risk quantification results of D-PSA and S-PSA are compared and evaluated. Suggestions and recommendations for using D-PSA are described in order to provide a technical perspective.

철도건널목 위험도 정량평가 방법론 적용성 연구 (Feasibility Study on the Risk Quantification Methodology of Railway Level Crossings)

  • 강현국;김만철;박주남;왕종배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.605-613
    • /
    • 2007
  • 위험 분석을 위한 방법론은 결정론적 정성적 접근과 확률론적 정량적 접근으로 대별될 수 있는데, 보다 현실적으로 다양한 요인을 적극적으로 고려할 수 있는 정량적 방법론은 효율성이 높으나 모델의 복잡성과 자료수집의 어려움을 극복하는 것이 필요하다. 본 연구에서는 복잡한 모델링을 체계적으로 수행하여 철도 건널목에서의 사고로 인한 위험도를 정량적으로 평가하기 위한 방법론을 도출하고 기본적인 적용성 연구를 통해, 정량평가 방법론의 유용성을 입증하고 추후 철도 통합 위험도 평가 시스템의 개발에 반영하는 목적으로 수행되었다. 제안된 위험도 평가를 위한 방법론은 다음과 같이 요약될 수 있다. 먼저 Preliminary Hazard Analysis 결과로부터 철도 사고에 대한 위험요인 목록을 작성하고 사건수목(Event Tree)을 이용하여 위험요인별로 사고 시나리오를 전개한다. 사건수목중 사건수목 분기확률을 정량화하기위해 보조논리를 필요로 하는 경우에 대해서 고장수목(Fault Tree)을 작성한다. 작성된 사건수목과 고장수목에 정량화를 위해 필요한 평가 자료를 입력하고 통합 정량화 방법론을 적용하여 최종 정량화를 수행한다. 정량화된 결과에 사고 상황을 고려한 해석을 수행하고 필요하다면 민감도 분석이나 불확실성 분석이 수행한다. 본 연구에서는 이러한 분석 방법론을 전국 철도건널목 사고 분석에 시범 적용하였다. 또한 2005년 국내 철도 건널목에서 발생한 사고자료를 이용하여 시범적인 정량화를 수행하여 그 적용성을 보였다.

  • PDF

공사일지의 텍스트 마이닝을 통한 우천 공기지연 리스크 정량화 (Quantification of Schedule Delay Risk of Rain via Text Mining of a Construction Log)

  • 박종호;조민건;엄세호;박선규
    • 대한토목학회논문집
    • /
    • 제43권1호
    • /
    • pp.109-117
    • /
    • 2023
  • 건설공사에서의 공기지연은 공사금액 증가, 발주처 클레임, 무리한 공기단축에 따른 건설공사의 질 하락 등 건설프로젝트에 악영향을 끼치는 주요 리스크 요인이다. 기존 연구에서는 공기지연 리스크의 중요도 및 우선순위를 파악하고 중요도에 따라 공정을 관리하였으나, 공기지연 리스크의 심도는 데이터 수집의 한계 등으로 정량화 연구가 미흡하다. 따라서 본 연구에서는 BERT (Bidirectional Encoder Representations from Transformers) 언어 모델을 활용하여 비정형데이터로 저장된 공사일지의 작업내용을 분석 가능한 WBS (Work Breakdown Structure) 기반의 정형데이터로 변환하고 리스크 분류 및 도출 체계, 공정계획에 사용가능한 리스크 발생확률, 리스크 확률분포(심도)의 정량화 방안을 제시하였다. 제안된 프로세스를 고속도로공사 8개 공구에 적용하여, 39개 세부 공중 중 8개의 세부 공종에서 75건의 우천 공기지연 리스크를 도출하였다. K-S 검정을 통해 4개 공종에서 유의미한 확률분포를 도출하였으며 위험도를 비교하였다. 향후 본 연구에서 제시된 프로세스는 시공단계에서 발생하는 다양한 공기지연 요인의 도출 및 심도 정량화에 적용될 수 있을 것으로 기대된다.

건설공사보험 사례를 활용한 건설현장 인명사고 정량화 모델 개발 기초연구 (A Basic Study on Quantification Model Development of Human Accidents based on the Insurance Claim Payout of Construction Site)

  • 하선근;김태희;김지명;장준호;손기영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.195-196
    • /
    • 2017
  • The number of human accidents in the construction industry is increasing every year, and it constitute the highest percentage among industry. This means that activities performed to prevent safety accidents in the country are not efficient to reduce the rate of accidents in the construction industry. In order to solve this issue, research has been conducted from various perspectives. But, research regarding to quantification model of human accidents is insufficient. the objective of this study is to conduct a basic study on quantification model development of human accidents. To achieve the objective, first, Cause of accident is defined the through literature review. Second, a basic statistic analysis is conducted to determine the characteristics of the accident causes. Third, the analysis is conducted after dividing into four categories : accumulate rate, season, total construction cost, and location. In the future, this study can be used as a reference for developing the safety management checklist for safety management in construction site and development of prediction models of human accident.

  • PDF

공급사슬 관점에서 기업 위험의 계량적 추정 (Quantitative Estimation of Firm's Risk from Supply Chain Perspective)

  • 박근영;한현수
    • Journal of Information Technology Applications and Management
    • /
    • 제22권2호
    • /
    • pp.201-217
    • /
    • 2015
  • In this paper, we report computational testing result to examine the validity of firm's bankruptcy risk estimation through quantification of supply chain risk. Supply chain risk in this study refers to upstream supply risk and downstream demand risk, To assess the firm's risk affected by supply chain risk, we adopt unit of analysis as industry level. since supply and demand relationships of the firm could be generalized by the industry input-output table and the availability of various valid economic indicators which are chronologically calculated. The research model to estimate firm's risk level is the linear regression model to assess the industry bankruptcy risk estimation of the focal firm's industry with the independent variables which could quantitatively reflect demand and supply risk of the industry. The publicly announced macro economic indicators are selected as the candidate independent variables and validated through empirical testing. To validate our approach, in this paper, we confined our research scope to steel industry sector and its related industry sectors, and implemented the research model. The empirical testing results provide useful insights to further refine the research model as the valid forecasting mechanism to capture firm's future risk estimation more accurately by adopting supply chain industry risk aspect, in conjunction with firm's financial and other managerial factors.

국내 건설현장 내·외부 인명사고 리스크 정량화 모델 개발 기초연구 (A Basic Study on Quantification Risk Model of Human Accidents on Exterior Construction Site in South Korea)

  • 오준석;하선근;김태희;전상섭;김지명
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.132-133
    • /
    • 2018
  • Many studies regarding construction safety management have been conducted. However, it is insufficient to research on external construction site. As a result, ordinary people around the construction site have injured and have a negative view when they think construction industrial since it has regarded having an overfull industrial accidents on media. To break the stereotype and prevention of accident on construction industry have been emphasized at this point in time, it is necessary to establish a comprehensive safety management system which is considered not only internal safety management but also external safety management. Therefore, the objective of this study is to develop the human accident risk quantification model by utilizing the third party payout data which occurred by incomplete safety management on external construction site. This study is conducted as a basic study for developing safety management manuals on internal·external construct site. In the future, it is expected to be used as a reference.

  • PDF

철도 위험도 통합 평가 방법 및 도구 개발 (Development of Integrated Method and Tool for Railway Risk Assessment)

  • 한상훈;안광일;왕종배;이호중
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1132-1139
    • /
    • 2006
  • Railway risk is evaluated by a method of linking event trees and fault trees as the general PSA(Probabilistic Safety Assessment) model for the risk assessment of complex systems. Accident scenarios causing undesirable events are modeled by event trees comprised of several accident sequences. Each branch located in the accident progression of the event tree is modeled by an fault tree or can be represented by some value too simply. We usually evaluate the frequency of the whole sequence by adding them after calculating the frequency of each sequence at a time. However, since there are quite a number of event trees and fault trees in the railway risk assessment model, the number of sequence to evaluate increases and preparation for the risk assessment costs much time all the more. Also, it may induce errors when analysts perform the work of quantification. Therefore, the systematic maintenance and control of event trees and fault trees will be essential for the railway risk assessment. In this paper we introduce an integrated assessment method using one-top model and develop a risk assessment tool for the maintenance and control of the railway risk model.

  • PDF

Windborne debris risk analysis - Part II. Application to structural vulnerability modeling

  • Lin, Ning;Vanmarcke, Erik;Yau, Siu-Chung
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.207-220
    • /
    • 2010
  • The 'chain reaction' effect of the interaction between wind pressure and windborne debris is likely to be a major cause of damage to residential buildings during severe wind events. The current paper (Part II) concerns the quantification of such pressure-debris interaction in an advanced vulnerability model that integrates the debris risk model developed in Part I and a component-based wind-pressure damage model. This vulnerability model may be applied to predict the cumulative wind damage during the passage of particular hurricanes, to estimate annual hurricane losses, or to conduct system reliability analysis for residential developments, with the effect of windborne debris fully considered.

퍼지 집합론을 이용한 위험분석 시스템 (Risk Analysis System in Fuzzy Set Theory)

  • 홍상우
    • 산업경영시스템학회지
    • /
    • 제13권21호
    • /
    • pp.29-41
    • /
    • 1990
  • An assessment of risk in industrial and urban environments is essential in the prevention of accident and in the analysis of situations which are hazardous to public health and safety. The risk imposed by a particular hazard increases with the likelihood of occurence of the event, the exposure and the possible consequence of that event. In a traditional approach, the calculation of a quantitative value of risk is usually based on an assignment of numerical values of each of the risk factors. Then the product of the values of likelihood, exposure and consequences called risk score is derived. However vagueness and imprecision in mathematical quantification of risk are equated with fuzziness rather than randomness. In this paper, a fuzzy set theoretic approach to risk analysis is proposed as an alternative to the techniques currently used in the area of systems safety. Then the concept of risk evaluation using linguistic representation of the likelihood, exposure and consequences is introduced. A risk assessment model using approximate reasoning technique based on fuzzy logic is presented to drive fuzzy values of risk and numerical example for risk analysis is also presented to illustrate the results.

  • PDF