• Title/Summary/Keyword: risk quantification

Search Result 186, Processing Time 0.025 seconds

Separation of Nanomaterials Using Flow Field-Flow Fractionation (흐름 장-흐름 분획기를 이용한 나노물질의 분리)

  • Kim, Sung-Hee;Lee, Woo-Chun;Kim, Soon-Oh;Na, So-Young;Kim, Hyun-A;Lee, Byung-Tae;Lee, Byoung-Cheun;Eom, Ig-Chun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.835-860
    • /
    • 2013
  • Recently, the consumption of nanomaterials has been significantly increased in both industrial and commercial sectors, as a result of steady advancement in the nano-technologies. This ubiquitous use of nanomaterials has brought up the concern that their exposure to environments may cause detrimental effects on human health as well as natural ecosystems, and it is required to characterize their behavior in various environmental media and to evaluate their ecotoxicity. For the sake of accomplishing those assessments, the development of methods to effectively separate them from diverse media and to quantify their properties should be requisitely accompanied. Among a number of separation techniques developed so far, this study focuses on Field-Flow Fractionation (FFF) because of its strengths, such as relatively less disturbance of samples and simple pretreatment, and we review overseas and domestic literatures on the separation of nanomaterials using the FFF technique. In particular, researches with Flow Field-Flow Fractionation (FlFFF) are highlighted due to its most frequent application among FFF techniques. The basic principle of the FlFFF is briefly introduced and the studies conducted so far are classified and scrutinized based on the sort of target nanomaterials for the purpose of furnishing practical data and information for the researchers struggling in this field. The literature review suggests that the operational conditions, such as pretreatment, selection of membrane and carrier solution, and rate (velocity) of each flow, should be optimized in order to effectively separate them from various matrices using the FFF technique. Moreover, it seems to be a prerequisite to couple or hyphenate with several detectors and analyzers for quantification of their properties after their separation using the FFF. However, its application has been restricted regarding the types of target nanomaterials and environmental media. Furthermore, domestic literature data on both separation and characterization of nanomaterials are extremely limited. Taking into account the overwhelmingly increasing consumption of nanomaterials, the efforts for the area seem to be greatly urgent.

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.

A Study on Integrated Logistic Support (통합병참지원에 관한 연구)

  • 나명환;김종걸;이낙영;권영일;홍연웅;전영록
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.277-278
    • /
    • 2001
  • The successful operation of a product In service depends upon the effective provision of logistic support in order to achieve and maintain the required levels of performance and customer satisfaction. Logistic support encompasses the activities and facilities required to maintain a product (hardware and software) in service. Logistic support covers maintenance, manpower and personnel, training, spares, technical documentation and packaging handling, storage and transportation and support facilities.The cost of logistic support is often a major contributor to the Life Cycle Cost (LCC) of a product and increasingly customers are making purchase decisions based on lifecycle cost rather than initial purchase price alone. Logistic support considerations can therefore have a major impact on product sales by ensuring that the product can be easily maintained at a reasonable cost and that all the necessary facilities have been provided to fully support the product in the field so that it meets the required availability. Quantification of support costs allows the manufacturer to estimate the support cost elements and evaluate possible warranty costs. This reduces risk and allows support costs to be set at competitive rates.Integrated Logistic Support (ILS) is a management method by which all the logistic support services required by a customer can be brought together in a structured way and In harmony with a product. In essence the application of ILS:- causes logistic support considerations to be integrated into product design;- develops logistic support arrangements that are consistently related to the design and to each other;- provides the necessary logistic support at the beginning and during customer use at optimum cost.The method by which ILS achieves much of the above is through the application of Logistic Support Analysis (LSA). This is a series of support analysis tasks that are performed throughout the design process in order to ensure that the product can be supported efficiently In accordance with the requirements of the customer.The successful application of ILS will result in a number of customer and supplier benefits. These should include some or all of the following:- greater product uptime;- fewer product modifications due to supportability deficiencies and hence less supplier rework;- better adherence to production schedules in process plants through reduced maintenance, better support;- lower supplier product costs;- Bower customer support costs;- better visibility of support costs;- reduced product LCC;- a better and more saleable product;- Improved safety;- increased overall customer satisfaction;- increased product purchases;- potential for purchase or upgrade of the product sooner through customer savings on support of current product.ILS should be an integral part of the total management process with an on-going improvement activity using monitoring of achieved performance to tailor existing support and influence future design activities. For many years, ILS was predominantly applied to military procurement, primarily using standards generated by the US Government Department of Defense (DoD). The military standards refer to specialized government infrastructures and are too complex for commercial application. The methods and benefits of ILS, however, have potential for much wider application in commercial and civilian use. The concept of ILS is simple and depends on a structured procedure that assures that logistic aspects are fully considered throughout the design and development phases of a product, in close cooperation with the designers. The ability to effectively support the product is given equal weight to performance and is fully considered in relation to its cost.The application of ILS provides improvements in availability, maintenance support and longterm 3ogistic cost savings. Logistic costs are significant through the life of a system and can often amount to many times the initial purchase cost of the system.This study provides guidance on the minimum activities necessary to Implement effective ILS for a wide range of commercial suppliers. The guide supplements IEC60106-4, Guide on maintainability of equipment Part 4: Section Eight maintenance and maintenance support planning, which emphasizes the maintenance aspects of the support requirements and refers to other existing standards where appropriate. The use of Reliability and Maintainability studies is also mentioned in this study, as R&M is an important interface area to ILS.

  • PDF

Preservation Conditions of Aqueous Samples Containing silver Nanomaterials (은나노물질을 포함한 수질시료의 보관조건)

  • Kang, Mun Hee;Park, Sol;Lee, Sang-Woo;Kim, Hyun-A;Lee, Byung-Tae;Eom, Ig-Chun;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.218-227
    • /
    • 2015
  • A prerequisite for precise quantification of nanomaterials contained in environmental samples is to prepare suitable preservation conditions of samples. This study was initiated to suggest preservation conditions of aqueous samples for analyses of metal nanomaterials. Variation in the size of silver nanomaterial (cit-AgNP) was observed according to change in various conditions, such as pH, electrolyte concentration, temperature, nanomaterial concentration, and time. Aggregation of AgNP was characterized for each environmental condition, and finally proper preservation conditions of samples were proposed based on experimental results on AgNP aggregation. In addition, the preservation period of sample was computed by the doublet time of AgNP. The results indicate that the aggregation rate of cit-AgNP was close to 0 at the conditions of pH of ${\geq}7$, electrolyte ($Ca(NO_3)_2$) concentration of ${\leq}3mM$, temperature of $4^{\circ}C$, and cit-AgNP concentration of ${\leq}2mg/L$. Furthermore, the experimental results on doublet time of cit-AgNP suggest that maximum preservation period was evaluated to be 15.79~17.53 days when the concentration of 100 nm cit-AgNP is assumed to be $1{\mu}g/L$ which is considered as an environmentally-relevant concentration of engineered nanomaterials. Our results suggest that samples should be preserved at $4^{\circ}C$ and analyzed within 2 weeks.

Establishment of Choline Analysis in Infant Formulas and Follow-up Formulas by Ion Chromatograph (이온크로마토그래프를 이용한 조제유류 및 영아용·성장기용 조제식 중 콜린 함량 분석법 연구)

  • Hwang, Kyung Mi;Ham, Hyeon Suk;Lee, Hwa Jung;Kang, Yoon Jung;Yoon, Hae Seong;Hong, Jin Hwan;Lee, Hyoun Young;Kim, Cheon Hoe;Oh, Keum Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.411-417
    • /
    • 2017
  • This study was conducted to establish the analysis method for the contents of choline in infant formulas and follow-up formulas by ion chromatograph (IC). To optimize the method, we compared several conditions for extraction, purification and instrumental measurement using spiked samples and certified reference material (CRM; NIST SRM 1849a) as test materials. IC method for choline was established using Ion Pac CG column and 18 mM $H_2SO_4$ mobile phase. The parameters of validation were specificity, linearity, LOD, LOQ, recovery, accuracy, precision and repeatability. The specificity was confirmed by the retention time and the linearity, $R_2$ was over 0.999 in range of 0.5~10 mg/L. The detection limit and quantification limit were 0.14, 0.43 mg/L. The accuracy and precision of this method using CRM were 95%, 2.1% respectively. Optimized methods were applied in sample analysis to verify the reliability. All the tested products were acceptable contents of choline compared with component specification for nutrition labeling. The standard operating procedures were prepared for choline to provide experimental information and to strengthen the management of nutrient in infant formula and follow-up formula.

Analysis and Safety Assessment of Antioxidants Migrated from Polyethylene and Polypropylene Food Packaging Materials into Food Simulants (폴리에틸렌 및 폴리프로필렌 기구·용기·포장 유래 산화방지제 분석 및 안전성평가)

  • Choi, Heeju;Choi, Jae Chun;Bae, In-Ae;Park, Se-Jong;Kim, MeeKyung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.424-433
    • /
    • 2017
  • Antioxidants are used in the manufacturing of commercial food packages made of polyolefin plastic such as polyethylene and polypropylene for the purpose to delay the oxidation reaction of the polymer due to oxygen or traces of ozone in the atmosphere. Additives in plastics may be migrated from the packaging materials into foods, thereby presenting a potential health risk to the consumer. Therefore, it is necessary to determine migration level of antioxidants from food packaging materials to foodstuffs in order to take proactive management. In this study, we have developed a method for the analysis of 10 antioxidants, which are butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), Cyanox 2246, 425 and 1790, Irgafos 168, and Irganox 1010, 1330, 3114 and 1076, migrated from the food packaging materials into four food simulants for aqueous, acidic, alcoholic and fatty foods. The antioxidants were determined by reversed-phase high-performance liquid chromatograph-ultraviolet detector with 276 nm after solid-phase extraction with a hydrophilic-lipophilic balance (HLB) cartridge or dilution with isopropanol. The analytical method showed a good linearity of coefficient ($R^2{\geq}0.99$), limits of detection (0.11~0.41 mg/L), and limits of quantification (0.34~1.24 mg/L). The recoveries of antioxidants spiked to four food simulants ranged from 71.3% to 109.4%. The migrated antioxidants in this study were within the safety levels that resulted from the safety assessment by the estimated daily intake to the tolerable daily intake.