• 제목/요약/키워드: rise velocity

검색결과 346건 처리시간 0.023초

고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석 (Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment)

  • 김경호;박천홍
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

Reynolds 수와 Knudsen 수가 초소형 점성펌프에 미치는 영향 (EFFECTS OF THE REYNOLDS AND KNUDSEN NUMBERS ON THE FLOW OF A MICRO-VISCOUS PUMP)

  • 강동진;이벨리나이바노바이바노바
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.14-19
    • /
    • 2008
  • Effects of the Reynolds and Knudsen numbers on a micro-viscous pump are studied by using a Navier-Stokes code based on a finite volume method. The micro viscous pump consists of a circular rotor and a two-dimensional channel. The channel walls are treated by using a slip velocity model. The Reynolds number is studied in the range of $0.1{\sim}50$. The Knudsen number varies from 0.01 to 0.1. Numerical solutions show that the pump works efficiently when two counter rotating vortices formed on both sides of the rotor have the same size and intensity. As the Reynolds number increases, the size and intensity of the vortex on the inlet side of the pump decrease. It disappears when the Reynolds number is larger than about Re=20. The characteristics of the performance of the pump is shown to deteriorate, in terms of mean velocity and pressure rise, as the Reynolds number increases. The Knudsen number shows a different effect on the characteristics of the pump. As it increases, the mean velocity and pressure rise decrease but the characteristics of the vortex flow remains unchanged, unlike the effect of Reynolds number.

시험체 형상에 따른 고강도 콘크리트의 수화열 및 자기수축 초기특성 분석 (Effects of Specimen Shape on Hydration Heat and Autogenous shrinkage at an early)

  • 이의배;구경모;김영선;김영덕;김규옹;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.915-918
    • /
    • 2008
  • 수화열 및 자기수축은 동일한 수화반응에 의해 필연적으로 발생되는 현상으로서 여러 연구자들에의해 수화온도와 자기수축의 깊은 상관성은 언급되어 왔으나, 아직까지 수화온도와 자기수축의 구체적인 관계에 대한 연구보고는 거의 없는 실정이다. 이에 본 연구에서는 시험체의 단면크기를 달리하여 초기 수화발열 및 자기수축의 특성을 구체적으로 분석한 후, 내부 수화온도와 자기수축의 상관성을 검토하였다. 그 결과, 시험체 단면이 증가할수록 전체적인 내부온도와 자기수축은 증가하였으며, 수화발열상승구간 및 자기수축증가구간에서 발생하는 수화온도 상승량 및 상승률, 자기수축 증가량 및 증가율은 증가하였다. 수화발열상승속도 및 자기수축증가속도가 증가할수록 구간에서 발생하는 수화온도상승량과 자기수축증가량은 증가한 반면, 수화온도상승률과 자기수축증가율은 유사하게 나타났으며, 수화발열상승 속도가 증가할수록 자기수축증가구간의 자기수축증가량과 자기수축증가속도는 증가하였다.

  • PDF

초고층 공동주택의 주방.욕실 배기 풍속을 풍력발전에 활용하는 방안 (A Study on the Wind Power Generation Using Vertical Exhaust Air Duct of the High-Rise Apartments)

  • 이용호;김성용;황정하;박진철
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.1-10
    • /
    • 2012
  • The purpose of this study was to promote the utilization of wind velocity of kitchen and bathroom exhaust ducts for wind power generation in high-rise apartments. The research content can be summarized as follows: 1) Nine high-rise apartments were examined for the installation of kitchen and bathroom exhaust ducts located in the pipe shaft (PS) section. After selecting simulation candidates, a simulation was performed with the STAR-CCM+ Ver 5.06 program. 2) Of nine high-rise apartments, seven had kitchen and bathroom exhaust ducts, whose cross section was in the range of $0.16m^2{\sim}0.4m^2$. The area ratio between the exhaust ducts and PS section (cross section of exhaust duct/area of PS section ${\times}$ 100) was on average 3.2%. 3) The simulation results were analyzed. As a result, the smaller cross section kitchen and bathroom exhaust ducts had, the more advantages there were for increasing exhaust wind velocity. If an out air inlet duct is installed to the old kitchen and bathroom exhaust ducts, it will increase exhaust wind velocity by 3.01~3.98m/s and contribute to the proper wind velocity level (3.0m/s). 4) When the simultaneous usage rate between the kitchen and bathroom exhaust fan increased from 20% to 60%, exhaust wind velocity increased. The "entire house holds" condition for exhaust fan operation provided more even exhaust wind velocity than the "some house holds" condition. 5) Exhaust wind velocity increased in the order of amplified (T-3), induced (T-2) and vertical (T-1) top of kitchen and bathroom exhaust ducts. Of them, the amplified type (T-3) was under the least influence of external wind velocity and thus the most proper for kitchen and bathroom exhaust duct tops.

Monitoring of wind effects on an instrumented low-rise building during severe tropical storm

  • Li, Q.S.;Hu, S.Y.
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.469-488
    • /
    • 2015
  • A full-scale instrumented low-rise building with gable roof was built at a coastal site with a high incidence of tropical cyclones for monitoring of wind effects on the building during windstorms. This paper presents the field measurements of the wind velocity field around and the wind-induced pressures on the low-rise building during the passage of severe tropical storm Soudelor. Near-ground wind characteristics such as wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and wind velocity spectra were investigated. The wind-induced pressures on the roof of the building were analyzed and discussed. The results revealed that the eave and ridge edges on the roof were subjected to the most severe suction pressures under quartering winds. These suction pressures showed obvious non-Gaussian behavior. The measured results were compared with the provisions of ASCE 7-10 to assess the suitability of the code of practice for the wind-resistant design of low-rise buildings under tropical cyclones. The field study aims to provide useful information that can enhance our understanding of the extreme wind effects on low-rise buildings in an effort to reduce tropical cyclone wind damages to residential buildings.

초고층 공동주택의 소형풍력발전시스템 적용을 위한 수직연도 활용에 관한 연구 (A Study on the Vertical Flue Duct for Application of Small Wind Power System in High-Rise Apartments)

  • 김성용;이용호;박진철;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.116-125
    • /
    • 2011
  • This study examined vertical shafts in high-rise apartments of the old high-rise buildings, reviewed the possibility of using flue ducts, and analyzed airflow patterns according to pressure differences between in and out side of flue ducts through computational fluid dynamics(CFD). The resulting conclusions are as follows: 1) The analysis results of airflow according to the stack effect of flue ducts show that smaller-diameter flue ducts(${\phi}1.2m$) would be morefavorable in increasing downward wind velocity than bigger-diameter ones(${\phi}1.6m$) and that the introduction ducts for outside air should be more than 50% of flue duct diameter to obtain a downward wind velocity higher than $3.0^m/s$ that is the minimum blade wind velocity of a small domestic wind generator. 2) The optimal installation location of a bypass introduction duct is the neutral plane of a flue duct or lower. When the diameter of the upper duct is bigger than that of the lower duct, it will generate more effects on the increase of downward wind velocity in flue ducts.

Empirical numerical model of tornadic flow fields and load effects

  • Kim, Yong Chul;Tamura, Yukio
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.371-391
    • /
    • 2021
  • Tornadoes are the most devastating meteorological natural hazards. Many empirical and theoretical numerical models of tornado vortex have been proposed, because it is difficult to carry out direct measurements of tornado velocity components. However, most of existing numerical models fail to explain the physical structure of tornado vortices. The present paper proposes a new empirical numerical model for a tornado vortex, and its load effects on a low-rise and a tall building are calculated and compared with those for existing numerical models. The velocity components of the proposed model show clear variations with radius and height, showing good agreement with the results of field measurements, wind tunnel experiments and computational fluid dynamics. Normal stresses in the columns of a low-rise building obtained from the proposed model show intermediate values when compared with those obtained from existing numerical models. Local forces on a tall building show clear variation with height and the largest local forces show similar values to most existing numerical models. Local forces increase with increasing turbulence intensity and are found to depend mainly on reference velocity Uref and moving velocity Umov. However, they collapse to one curve for the same normalized velocity Uref / Umov. The effects of reference radius and reference height are found to be small. Resultant fluctuating force of generalized forces obtained from the modified Rankine model is considered to be larger than those obtained from the proposed model. Fluctuating force increases as the integral length scale increases for the modified Rankine model, while they remain almost constant regardless of the integral length scale for the proposed model.

Application of Energy Dissipation Technology in High-Rise Buildings

  • Hu, Da-Zhu;Zhang, Xiao-Xuan;Li, Guo-Qiang;Sun, Fei-Fei;Jin, Hua-Jian
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.137-147
    • /
    • 2021
  • The principle of energy dissipation technology is to dissipate or absorb the seismic energy input through the deformation or velocity change of dampers installed in the main structure of high-rise buildings, so as to reduce the seismic response of the buildings. With the development of energy dissipation technology, recognized as an effective and new measurement for reducing seismic effects, its application in high-rise buildings has become more and more popular. The appropriate energy dissipation devices suitable for high-rise buildings are introduced in this paper. The effectiveness of energy-dissipation technology for reducing the seismic response of high-rise buildings with various structural forms is demonstrated with a number of actual examples of high-rise buildings equipped with various energy dissipation devices.

PB 배관에서의 유체압력에 관한 연구 (The Analysis of Fluid Pressure in Polybutylene Piping System)

  • 이용화
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.17-23
    • /
    • 2006
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene piping system. Experiments were conducted under the following conditions: initial pressure $1\~5$ bar, flow velocity $\~0.5-3.0m/s$ and water temperature $25^{\circ}C$. Results indicated that the peak pressure generated by quick valve closure reached Joukowsky's value. We also found that the maximum pressure rise and the pressure history depended on not only initial steady pressure but also flow velocity.

단순 급수관로에서의 워터 햄머 현상에 관한 연구 (The Experimental Study of Water Hammer by Valve Closure in Water Supply Piping System)

  • 이용화;유지오;박효석;김영호
    • 설비공학논문집
    • /
    • 제12권7호
    • /
    • pp.697-702
    • /
    • 2000
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening copper piping system. Experiments were conducted under the following conditions : initial pressure 1~5 bar, flow velocity 0.6~3.0 m/s and water temperature $20^{\circ}C$ . Results indicated that the peak pressure generated by quick valve closure reached Joukowsky's value. And we also found that the maximum pressure rise and the pressure history were depended on not only closing time but also flow velocity.

  • PDF