• Title/Summary/Keyword: rise on temperature

Search Result 1,480, Processing Time 0.027 seconds

A Study on the Effects of Temperature Rise and Turbulence on the Performance of Large Tilting Pad Journal Bearings (대형 틸팅패드 저어널베어링의 성능에 미치는 온도상승 및 난류의 효과에 관한 연구)

  • 하현천;김경웅
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.22-31
    • /
    • 1993
  • The thermohydrodynamic performance of large tilting pad journal bearings is analyzed, taking into account the three dimensional variation of lubricant viscosity. The eddy viscosity model based on wall formula is applied. The effects of temperature rise and turbulence on the bearing performance are studied in comparision with the isothermal or the laminar analysis. It is shown that these effects have significant influence on temperature distribution, load capacity and power loss of the bearing.

A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System

  • Zhang, ZeChen;Kong, Ha-Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The purpose of this study is to analyse the characteristics and spreading laws of parameters such as fire smoke, concentration of CO, visibility, and temperature at fire scene in high-rise residential buildings under the different conditions of fire doors and automatic fire extinguishing systems. Using Pyrosim to simulate diverse fire scenes in a high-rise apartment with corridors, to analyze the changes in those parameters. The results show that when a fire occurs, closing the fire-fighting corridor will increase the smoke temperature and concentration of CO in the stairwell, and reduce the height and visibility of the smoke layer; the automatic fire extinguishing system effectively suppresses the increase in the temperature of the fire smoke and the sedimentation of the smoke layer. Reasonable setting and operation of the automatic fire extinguishing system could effectively inhibit the spread of fire. Although closing fire corridor can slow down the direct upward spread of smoke through the corridor, it will force the fire smoke into the stairwell, which will seriously affect evacuation through the stairs. Therefore, in order to reduce risks, it is forbidden to close the fire doors of the firefighting corridor and stacking combustible materials in the corridor, Also, intensifying inspections and ensuring the normal operation of the automatic fire extinguishing system are indispensable. Based on the research results, the significance of installing fire-fighting facilities in the construction of high-rise apartments was discussed and proved.

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

A study on shrinkage of textile for embroidery with special reference to wash and textile weave (수예재료 포지의 수축성에 관한 연구)

  • 박정순
    • Journal of the Korean Home Economics Association
    • /
    • v.12 no.34
    • /
    • pp.701-709
    • /
    • 1974
  • A study on shrinkage after wash of several cotton textiles for embroidery on the market produced the following results : 1. As the wash temperature rises, the shrinkage increases. 2. Shrinkage of sample 2 and 3, variant weave of plain weave, is greatest, and the next is that of sample 1, a variant of plain weave. Shrinkage of sample 4 and 6, which have more floating, is small. 3. In the wash, thickness of the textile increases with rise of the temperature. 4. Strength of the textile increases with rise of the wash temperature.

  • PDF

Temperature Rise Prediction of Busbar of EHV GIS Considering Variation of Heat-Transfer Coefficient (열전달 계수의 변화를 고려한 초고압 GIS 모선의 온도 상승 예측)

  • Kim, Hyeon-Hun;Han, Seong-Jin;Ju, Su-Won;Jeong, Jin-Gyo;Lee, Byeong-Yun;Park, Gyeong-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.313-319
    • /
    • 2000
  • In order to design the current carrying conductor for GIS, it is important to predict temperature-rise when rated current flows in the bus bar. However, it is not easy to apply the correct heat transfer coefficient on the boundary between different material for the thermal analysis. In this paper, the heat transfer coefficient which depends on parameters such like material constant, model geometry as well as ambient temperature, was calculated by analytic method. The calculated coefficient is used for the temperature rise prediction by F.E.M. The results show good agreement with experimental data.

  • PDF

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

Prediction of Temperature Rise in Power Appratus (초고압 전력기기의 온도상승 예측)

  • Kim, S.W.;Park, J.H.;Hahn, S.C.;Lee, B.Y.;Park, K.Y.;Song, W.P.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.113-115
    • /
    • 2001
  • In order to design the power appratus such ac bus bar, the current carrying ampacity should be determined, Since it is limited by maxium operating temperature, it is very important to predict temperature-rise on it. The main causes to raise temperature are joule's loss in the current carrying conductor and induced circulating and eddy current in the tank. The heat transfer is divided into convection and radiation on boundary, determining convection heat transfer coefficient is not easy. This paper propose a new technique that can be used to estimate the temperature rise in the extra high voltage bus bar. The heat transfer coefficient is analytically calculated by applying Nusselt Number depending on temperature as well as model geometry. The analytic method which use heat transfer coefficient is coupled with finite element method. The temperature distribution in the bus bar by the proposed method shows good agreement with experimental data.

  • PDF

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

Temperature Rise Prediction of 25.8kV 25kA Three-phase GIS Bus Bar (25.8kV 25kA 3상 GIS 모선의 온도상승 예측)

  • Kim, Joong-Kyoung;Hahn, Sung-Chin;Oh, Yeon-Ho;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.894-895
    • /
    • 2007
  • This paper presents coupled analysis between finite element method and analytic technique for predicting temperature rise of 25.8kV 25kA three-phase GIS bus bar. The power losses and temperature distribution of three-phase GIS bus bar model are analyzed by magneto-thermal finite element method. The heat transfer coefficients on the boundaries are analytically calculated by applying Nusselt number considering material constant and model geometry for the natural convection. And these are used as the input data to predict the temperature rise of three-phase GIS bus bar model by coupled magneto-thermal F.E.A. The predicted temperature of 25.8kV 25kA three-phase GIS bus bar model shows good agreement with the experimental data.

  • PDF

Thermal performance investigation of enhanced receiver tube for concentrated solar collector

  • Mohammed Al-Harrasi;Afzal Husain;M. Zunaid
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.137-144
    • /
    • 2022
  • This study presents an experimental investigation of conventional and enhanced receiver tube performance for the application of a concentrated parabolic trough collector (CPC). The CPC system is fabricated and tested for the conventional and enhanced receiver tubes. The experiments were performed on both tubes for the change of flow rates. The temperature rise of the tube surface, as well as working fluid, were monitored for varying flow rates. The results were compared and discussed in view of enhanced CPC system performance. The results exhibited that the temperature rise of the working fluid passing through the tube was more in the case of the enhanced tube compared to the conventional receiver tube under the same flow rates.