• Title/Summary/Keyword: ripple reduce controller

Search Result 73, Processing Time 0.022 seconds

A Study on 120Hz Output Voltage Ripple Reduction of LLC Converter using Resonant Controller (공진 제어기를 이용한 LLC 컨버터의 출력전압 120Hz 맥동저감에 관한 연구)

  • So, Byong-Chul;Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl;Hwang, Soon-Sang;Choi, Eun-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • This paper proposes a new method to reduce 120Hz output voltage ripple of LLC converter using resonant voltage controller. This method can reduce the 120Hz output voltage ripple with very high gain at this frequency by the resonant controller with previous PI voltage controller. The reason why the voltage ripple can be reduced is explained by the Bode diagram comparing with the previous PI controller. The simulation with Matlab/Simulink is carried out for this resonant controller and the simulation results show that resonant controller can reduce the 120Hz output voltage ripple. Experiments with DSP controller also carried out and the experimental results also show that the usefulness of the proposed voltage controller.

Design of the Modified PID Speed Controller to Reduce the Speed Ripple (속도 리플 억제를 위한 수정된 PID 속도 제어기의 설계)

  • Kim, Hong-Min;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • PMSM(Permanent Magnet Synchronous Motor) has periodic torque ripple from the cogging torque and load conditions. This paper proposes the modified PID speed controller to reduce the speed ripple of the PMSM. The proposed modified PID controller uses a selective D(Differential) control term according to the speed error and the differential of the speed error. The proposed speed controller produces an additional torque reference such as torque compensator based on PI controller according to the speed error and the differential of the speed error, and it can reduce the vibration of the conventional D-control term with reduced speed ripple. Since the additional torque reference of the proposed speed controller is changed by the sign of the speed error and the differential of the speed error, a simple function to determine the sign of the error is used to produce the compensated torque. The proposed control scheme is verified by the computer simulation and the experiments.

Force Ripple Reduction of 2 Phase Hybrid Lineny Pulse Motor using Neural Network (신경회로망을 이용한 2상 하이브리드 리니어 펄스 모터의 힘 리플 감소)

  • 김유신;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.362-362
    • /
    • 2000
  • The purpose of this thesis is to reduce force ripple of linear pulse motor(LPM) using neural network and to enhance precision. In order to this, we propose a new controller using a neural network to compensate disturbances. The structure includes adaptation block which learns the dynamics of the periodic disturbance and forces the interferences, caused by disturbances. The proposed controller compensates an unmodeled dynamics in the LPM. The neural network changes a current command to reduce position error and force ripple of the LPM. We compare proposed controller with PI controller. Simulation result shows that the proposed controller has better performance than a PI controller without neural network.

  • PDF

A Study on the Torque Ripple Reduction in Brushless DC Motors using Disturbance-Observer Controller (BLDC 모터의 토크리플을 줄이기 위한 외란 관측기 기반 제어기 설계에 관한 연구)

  • Jang, So-Hyun;Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1217-1223
    • /
    • 2015
  • In this paper, we study the problem of torque ripple minimization in Brushless DC Motors (BLDC) and proposes a disturbance observer (DOB) based controller in order to efficiently reduce the torque ripple. In the DOB based control system, an equivalent disturbance (plant disturbance and effect of modelling error) is cancelled by its estimate. When the DOB controller is applied to BLDC motors, the effect of inverter switching is considered as an equivalent disturbance and to be cancelled by the DOB controller. Through computer simulations, it is shown that the performance of the proposed DOB controller is superior to that of the conventional PI controller. In the case where the numerical values of resistance and inductance are not known exactly, it is shown that the proposed DOB controller achieves better performance than the PI controller.

Design of Current Controller for Performance Improvement of Linear Pulse Motor Using Neural Networks (리니어펄스모터의 제어 성능 향상을 위한 신경 회로망을 이용한 전류 제어기 설계)

  • Park, Jong-Bum;Park, Jung-Il;Lee, Suk-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.486-489
    • /
    • 1998
  • In this paper, we introduced the neural network to reduce force ripple of current controller for a linear pulse motor. In general, conventional position controllers of linear pulse motor disregard the modeling error and load variations, which cause inaccuracy in position control. The proposed current controller based on neural network teaming modifies the current commands in order to reduce force ripple due to these factors. The experiment results show that the proposed controller works efficiently for accurate position control of linear pulse motor.

  • PDF

Development of Robust Algorithm to Eliminate Low Frequency Current Ripples in Fuel Cell Generation System (동적변화에 강인한 연료전지 발전시스템의 저주파 리플전류 제거 알고리즘 개발)

  • Kim, Jong-Soo;Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1720-1727
    • /
    • 2009
  • This paper presents that generation and propagation mechanism of low frequency current ripples generated by a rectification effect of an inverter in fuel cell generation system is analyzed. The ripple reduction methode using hardware components such as capacitors and inductors is examined to reduce low frequency current ripples. A new fast and robust low frequency current ripple elimination algorithm is then proposed to incorporate a single loop current controller, which directly controls fuel cell current, without any extra hardware. The proposed algorithm can completely eliminate this current ripple as well as an overshoot or undershoot is significantly reduced. And the de link voltage and output current are well regulated by inverter controller. The validity of proposed algorithm is verified both computer simulation using PSIM 6.0 and experiment with a 1kW laboratory prototype.

The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation (단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;Lee, Young-Gwon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

Performance Improvement of Grid-Connected Inverter Systems under Unbalanced and Distorted Grid Voltage by Using a PR Controller

  • Lee, Jong-Hyun;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.918-925
    • /
    • 2012
  • This paper proposes a control method for grid-connected inverter systems under unbalanced and distorted grid voltage. The proposed method can reduce the power ripple caused by the unbalanced condition and compensate for the low-order harmonics of the output currents caused by the distortion of grid voltage. To reduce the power ripple, our method replaces the two conventional PI controllers with one PR controllers in the stationary frame. PR controllers can implement selective harmonic compensation without excessive computational requirements; the use of these controllers simplifies the method. Both the simulated and experimental results agree well with the theoretical analysis.

Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation (영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

A New Current Control Method for Torque Ripple Reduction on Brushless DC Motor (Brushless DC Motor에서 토크리플 저감을 위한 새로운 전류제어 기법)

  • Kwon K.J.;Kim S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.575-578
    • /
    • 2003
  • This paper presents a new current control method to reduce torque ripple of Brushless DC Motor during commutation. In the proposed control strategy, the current slopes of rising and decaying phase during commutation is equalized by the compensation voltage. By adding the compensation voltage for it to the current controller output, the reduced torque ripple can be obtained. The simulation and experimental results show that the proposed method reduces the torque and the current ripples significantly.

  • PDF