• Title/Summary/Keyword: ring speed

Search Result 392, Processing Time 0.024 seconds

Displacements of the flexible ring for an electromechanical integrated harmonic piezodrive system

  • Xu, Lizhong;Li, Huaiyong;Li, Chong
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1079-1092
    • /
    • 2016
  • In this paper, an electromechanical integrated harmonic piezodrive system is proposed. The operating principle of the drive system is introduced. The equation of the relationship between the displacements of the flexible ring and the rotating angle of the rotor is deduced. Using the equation, the displacements of the flexible ring for the drive system and their changes along with the system parameters are investigated. The results show that the displacements of the flexible ring changes periodically along with the rotation of the vibrator; there are abrupt changes in the displacements of the flexible ring at some points where there are abrupt changes in the number of the mesh teeth pair; the length of the flexible ring, the excitation voltage, and the speed ratio have obvious effects on the displacements of the flexible ring. The results are useful for the design of the drive system. ;

Variation of Inter-Ring Gas Pressure in Internal Combustion Engine (내연기관 피스톤 링들 사이 가스압력 변동)

  • Yun, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.238-249
    • /
    • 1995
  • The gas pressure acting on the rings in internal combustion engine influences the friction and wear characteristics. Inter-ring pressure variation during engine operation results from cylinder gas flow through a piston-ring pack. The flow passages consist of ring end gaps and clearances between the ring and the piston groove. The gas flow in the clearance between the ring and the groove is directly affected by the axial motion of the ring in the groove. In this paper the asperity contact force is newly considered in the prediction of the clearence between the ring and the groove surface. This term must be taken into account physically in case that the clearance get narrow rather than asperity height between the ring and the groove surface. Finally, comparisons of calculated inter-ring gas pressures based on the analytical method are made with the measured ones. The agereement was found to be good below midium engine speed, 3000rpm. In order to obtain accurate analytical results to the extend of high rpm range, it is recommended to include oil ring motion as well as top and second ring in analytical model.

  • PDF

Vibration Analysis of Turbocharger Rotor-Bearing System (과급기 축계의 진동 해석)

  • Suk, Ho-Il;Yang, Bo-Suk;Song, Jin-Dea
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.400.2-400
    • /
    • 2002
  • Recently rotating machines have became high speed and high Power and light weight. Bearings are one of the main components which influence power loss and stability of rotating machines. Appropriate bearing should be selected with considering characteristics of rotating machine. Floating ring journal bearing(FIB) consists of an inner film and outer film, and possess high damping and stability. FJB has been for adopted into turbocharger for the high stability at high operating speed. (omitted)

  • PDF

Finding-out the Natural Frequency of the Axle Gearbox Suspension System of the High-speed Train (고속전철 액슬 기어박스 현가계의 고유 진동수 측정)

  • 최진욱;차수덕;김용기;이태화
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.163-170
    • /
    • 2001
  • Axle Gearbox of the High Speed Train has rotational degree of freedom centered on the Axle Shaft Center Line, and constrained by the Reaction Arm connected to the Bogie Frame via Resilient Ring made of Rubber. This System is laid on the Power Train and can influence on the Power transmitted from Motor to Axle. The stiffeness of the Resilient Ring have to be selected for the Natural Frequency of this System do not overlap with the Teeth-mating Frequency. To confirm the Design Parameters, Calculation and Experiment were executed and compared.

  • PDF

Comparison of Theoretical Analysis with Test Results of Floating Ring Seals for the LRE Turbo Pump (액체 추진 로켓 터보 펌프용 플로팅 링 실에 대한 해석 및 실험 결과의 비교 연구)

  • Lee, Yong-Bok;An, Kyoung-Min;Kim, Chang-Ho;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.21-27
    • /
    • 2004
  • The floating ring seal has an advantage to find the optimum position by itself, which is used in the turbo pump of a liquid rocket. The main purpose of seals is to reduce the leakage. Especially, seals of the turbo pump for the liquid rocket engine are operated under the serious conditions such as high pressure above 10 MPa, very low temperature about $-180^{\circ}C$ and high rotating speed above 25,000 rpm. So, rotordynamic stability is very important for the system stability. In this paper, the leakage and dynamic characteristics of floating ring seals were investigated by a experimental and analytical method. The theoretical results of the leakage performance for the floating ring seal showed much higher than that of experimental results. On the other hand, the results of stiffness and damping characteristics showed similarity each other. As the shaft speed was increasing, the whirl frequency ratio was increased in the experimental results.

A Dual Slotted Ring Organization for Reducing Memory Access Latency in Distributed Shared Memory System (분산 공유 메모리 시스템에서 메모리 접근지연을 줄이기 위한 이중 슬롯링 구조)

  • Min, Jun-Sik;Chang, Tae-Mu
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.419-428
    • /
    • 2001
  • Advances in circuit and integration technology are continuously boosting the speed of processors. One of the main challenges presented by such developments is the effective use of powerful processors in shared memory multiprocessor system. We believe that the interconnection problem is not solved even for small scale shared memory multiprocessor, since the speed of shared buses is unlikely to keep up with the bandwidth requirements of new powerful processors. In the past few years, point-to-point unidirectional connection have emerged as a very promising interconnection technology. The single slotted ring is the simplest form point-to-point interconnection. The main limitation of the single slotted ring architecture is that latency of access increase linearly with the number of the processors in the ring. Because of this, we proposed the dual slotted ring as an alternative to single slotted ring for cache-based multiprocessor system. In this paper, we analyze the proposed dual slotted ring architecture using new snooping protocol and enforce simulation to compare it with single slotted ring.

  • PDF

A Study on the Tensile Property of Ring Specimen Having Gauge Length (평행부를 갖는 링 시험편의 인장특성 고찰)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.555-562
    • /
    • 2005
  • In this study, we tried to establish the method of evaluating the tensile properties of the ring specimen of Arsene which have gauge length. In this result, we verified the availability of central piece. We made ring specimens and devices such as central piece, pins, and clevises. A proper tensile speed was determined by pre-test. The result of main test was calibrated and compared with the result of FEM. To obtain the tensile properties from the ring test result, we observed two relationships: one is strain-displacement and the other is load ratio-displacement. The tensile properties could be evaluated by using these relationships.

Comparative study on displacement measurement sensors for high-speed railroad bridge

  • Cho, Soojin;Lee, Junhwa;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.637-652
    • /
    • 2018
  • This paper presents a comparative study of displacement measurement using four sensors that are being used in the field: they are a ring gauge, a laser Doppler vibrometer (LDV), a vision-based displacement measurement system (VDMS), and an optoelectronic displacement meter (ODM). The comparative study was carried out on a brand-new high-speed railroad bridge designed to produce displacements within a couple of millimeters under the loading of a high-speed train. The tests were carried out on a single-span steel plate girder bridge two times with different train loadings: KTX and HEMU. The measured displacement is compared as raw and further discussion was made on the measurement noise, peak displacement, and frequency response of four sensors. The comparisonsare summarized to show the pros and cons of the used sensors in measuring displacement at a typical high-speed railroad bridge.

Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor (터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향)

  • Lee, In-Beom;Hong, Seong-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF