• Title/Summary/Keyword: ring foundation

Search Result 29, Processing Time 0.021 seconds

Analysis of circular plates on two - parameter elastic foundation

  • Saygun, Ahmet;Celik, Mecit
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.249-267
    • /
    • 2003
  • In this study, circular plates subjected to general type of loads and supported on a two-parameter elastic foundation are analysed. The stiffness, elastic bedding and soil shear effect matrices of a fully compatible ring sector plate element, developed by Saygun (1974), are obtained numerically assuming variable thickness of the element. Ring sector soil finite element is also defined to determine the deflection of the soil surface outside the domain of the plate in order to establish the interaction between the plate and the soil. According to Vallabhan and Das (1991) the elastic bedding (C) and shear parameters ($C_T$) of the foundation are expressed depending on the elastic constants ($E_s$, $V_s$) and the thickness of compressible soil layer ($H_s$) and they are calculated with a suitable iterative procedure. Using ring sector elements presented in this paper, permits the generalization of the loading and the boundary conditions of the soil outside the plate.

Analysis of Species and Tree-Ring Dating of Wood Elements Used for the Daewoongjeon Hall of Youngguksa Temple (영국사 대웅전 목부재의 수종 및 연륜연대 분석)

  • Son, Byung-Hwa;Park, Won-Kyu;Yoon, Doo-Hyung
    • Journal of architectural history
    • /
    • v.15 no.2
    • /
    • pp.23-38
    • /
    • 2006
  • During the repair and restoration of the Daewoongjeon Hall of Youngguksa Temple, species identification and tree-ring dating for both present wood elements and charred ones excavated under the Hall, were conducted. The species of 74 wood elements of Daewoongjeon Hall, were identified as Pinus densiflora Sieb. et Zucc. and only 1 was identified as exotic Pinus species. The latter wood, which was used in the laths, seems to have been replaced during past repairs. Many documentary records and various artifacts pertaining to Youngguksa Temple are being excavated, but none described precisely the construction date of the present Daewoongjeon Hall. Also, from beneath the Daewoongjeon Hall, cornerstone and foundation of previous building and several charred wood elements were excavated. In comparing the direction of the stone columns of foundation of the previous structure and the existing Daewoongjeon Hall, the previous structure was rotated in an angle of approximately $15^{\circ}$. Therefore, in order to find the association of the previous structure with the present Daewoongjeon Hall, tree-ring dating was conducted. The dating of 41 original timbers and 14 roof-filling timbers of the present construction elements revealed that the last annual ring was of A. D. 1703 with complete latewood, indicating that those woods was cut some time between the autumn of 1703 and spring of 1704, and the building was erected in 1704 when we assume no period of wood storage. The year of the last annual ring of the charred elements, which were excavated from beneath the Daewoongjeon Hall, was analyzed as 1674. The cutting year of the woods used for the present building began in 1698, therefore, it can be presumed that the Daewoongjeon Hall before the fire was a structure that was elected shortly after 1674 and that a catastrophic fire occurred some time between 1674 and 1698.

  • PDF

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

Determination of the bearing capacity of model ring footings: Experimental and numerical investigations

  • Turedi, Yakup;Emirler, Buse;Ornek, Murat;Yildiz, Abdulazim
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • In this paper, it was presented an investigation on the load-settlement and vertical stress analysis of the ring footings on the loose sand bed by conducting both laboratory model tests and numerical analyses. A total of twenty tests were conducted in geotechnical laboratory and numerical analyses of the test models were carried out using the finite element package Plaxis 3D to find the ultimate capacities of the ring footings. Moreover, the results obtained from both foregoing methods were compared with theoretical results given in the literature. The effects of the ring width on bearing capacity of the footings and vertical stresses along the depth were investigated. Consequently, the experimental observations are in a very good agreement with the numerical and theoretical results. The variation in the bearing capacity is little when $r_i/R_o$ <0.3. That means, when the ring width ratio, $r_i/R_o$, is equal to 0.3, this option can provide more economic solutions in the applications of the ring footings. Since, this corresponds to less concrete consumption in the ring footing design.

Ab Initio Study of Mechanism of Forming Spiro-Ge-Heterocyclic Ring Compound From C2Ge=Ge: and Formaldehyde

  • Lu, Xiuhui;Li, Yongqing;Ming, Jingjing
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3690-3694
    • /
    • 2013
  • The $H_2Ge=Ge:$ and its derivatives ($X_2Ge=Ge:$, X = H, Me, F, Cl, Br, Ph, Ar${\ldots}{\ldots}$) is a new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of the cycloaddition reaction between singlet state Cl2Ge=Ge: and formaldehyde has been investigated with CCSD(T)//MP2/$6-31G^*$ method. From the potential energy profile, it could be predicted that the reaction has only one dominant reaction pathway. The reaction rule presented is that the two reactants first form a fourmembered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the ${\pi}$ orbital of formaldehyde forming a ${\pi}{\rightarrow}p$ donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge: atom in intermediate hybridizes to an $sp^3$ hybrid orbital after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between $H_2Ge=Ge:$ and formaldehyde, and laid the theory foundation of the cycloaddition reaction between $H_2Ge=Ge:$ and its derivatives ($X_2Ge=Ge:$, X = H, Me, F, Cl, Br, Ph, Ar${\ldots}{\ldots}$) and asymmetric ${\pi}$-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds. The study extends research area and enriches the research content of germylene chemistry.

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.

Development of a Health Monitoring System for Critical Parts of Wind Turbine Towers and Foundation Structures (풍력발전기 타워 및 기초 취약부 건전성 모니터링 시스템 개발)

  • Jaehun Jeong;Moonok Kim;Jongho Park;Seok-Young Jeong
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.23-36
    • /
    • 2024
  • In this study, a health monitoring system was developed for the two most vulnerable parts of a wind tower support structure: the connection between steel towers (L-Flange) and the concrete foundation-steel tower connection. To select assessment parameters for health monitoring, detailed FEM analysis was conducted using the ABAQUS program. Additionally, a testbed was established near the Jeju Woljeongri wind turbine farm to evaluate the applicability of measurement data by installing sensors. Through computational analysis and relevant criteria review, we defined limits for measurement parameters by vulnerable section. We categorized the structural safety evaluation into four stages: normal, caution, warning, and danger, and selected management criteria for each stage. From this, an algorithm to evaluate safety was developed, and a visualized monitoring platform based on the established critical parts monitoring system was developed.

Establishing Tree Ring δ18O Chronologies for Principle Tree Species (T. cuspidata, P. koraiensis, A. koreana, Q. mongolica) at Subalpine Zone in Mt. Jiri National Park and Their Correlations with The Corresponding Climate (지리산국립공원 아고산대 주요 수종(주목, 잣나무, 구상나무, 신갈나무)에 대한 산소동위원소연대기 작성 및 기후와의 관계 분석)

  • Seo, Jeong-Wook;Jeong, Hyun-Min;Sano, Masaki;Choi, En-Bi;Park, Jun-Hui;Lee, Kwang-Hee;Kim, Yo-Jung;Park, Hong-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.661-670
    • /
    • 2017
  • 50-year tree-ring ${\delta}^{18}O$ chronologies (1966~2015) for principle conifer tree species (Taxus cuspidata, Pinus koraiensis, Abies koreana) and Quercus mongolica at subalpine zone in Mt. Jiri were established. The establishing of tree-ring ${\delta}^{18}O$ chronologies for each tree species were fulfilled using four trees, which showed the good result in cross-dating. In the comparisons between tree-ring ${\delta}^{18}O$ chronologies within the same tree species all tree species showed reliable results statistically (p < 0.001), and they also showed EPS higher than 0.85. In addition to, the reliable correlations (p < 0.001) were verified between tree-ring ${\delta}^{18}O$ chronologies of four tree species, as well. In the response function analysis in order to investigate the relationships between tree-ring ${\delta}^{18}O$ chronologies and corresponding climatic factors, i.e., monthly precipitation and mean temperature, T. cuspidata showed a negative correlation with May precipitation (p < 0.05) and A. koreana showed a negative correlation with April precipitation (p < 0.05). If long tree-ring ${\delta}^{18}O$ chronologies of T. cuspidata and A. koreana will be established, it will be possible to reconstruct April and May precipitation in the past when we have no the meteorological data.

Scour Protection Effect around the Monopile Foundation (모노파일 기초 주변의 세굴방지 효과에 관한 연구)

  • Kim, Seon Min;Kim, Jong Kyu;Kim, Yong Kwan;Seo, Seong Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2017
  • In this research, a three-dimensional Computational Fluid Dynamics(CFD), scour characteristics around monopile was grasped and the effect of circular ring type scour protection on reducing protection was assessed. When Torsethaugen(1975) found that the scour area and its depth were coincided quantitatively On the ground of previous findings, after scour was assessed in terms of sea current velocity, we also found that the tendency of maximum scour depth and its width were increased as the sea current velocity was increased. The experiments were performed by attaching ring-circular typed scour protection under the bottom in order to reducing scour around the constructs of monopile type and showed reduced scour approximately by 68.5%. In addition, there were reduction of downward flow and bottom velocities, suggesting that scour protection reduce the effect of downward flow on scour.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on an Elastic Foundation - With Application to the Nuclear Reinforced Concrete Containment Structures- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(I) -철근 콘크리트 원자로 격납 건물을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.82-91
    • /
    • 1996
  • This is a basic study for the static and dynamic analysis on the elasto-plastic and elasto-viscoplastic of an axi-symmetric shell. The objective of this study was to investigate the mechanical characteristics of a nuclear reinforced concrete containment structure, which was selected as a model, by a numerical analysis using a finite element method. The structure was modeled with discrete ring elements of 8-noded isoparametric element rotating against the symmetrical axis, and the interaction between the foundation and the structure was modeled by Winkler's model. Also, the meridional tendon was modeled with 2-node truss elements, and the hoop tendon was done with point elements in two degrees of freedom. The effect of the tendon was considered without the increasement in total degree of freedom as the stiffness matrix of modeled tendon elements was assembled on the stiffness matrix of ring elements linked with the tendon. The results obtained from the analysis of an example were summarized as follows : 1. The stresses in the hoop direction on the interior and exterior surfaces of the structure were shown in changes of similar trend, and high stresses appeared on the structure wall 2. The stresses in the meridional direction on the interior and exterior surfaces were shown in change of different trend. Especially, the stresses at the junctions between the dome and the wall and between the wall and the bottom plate of the structure were very high, compared with those at other parts of the structure. 3. The stress changes in the direction of thickness on the crown of the dome were much linearly distributed. However, as the amount of tendon increased, the stresses in the upper and lower parts of the wall established with the tendon were shown stress concentration. 4. The stress changes in the direction of thickness on the center of the structure wall was linearly distributed in the all cases, and special stress due to the use of the tendon was not shown.

  • PDF