• Title/Summary/Keyword: ring derivation

Search Result 134, Processing Time 0.025 seconds

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN SEMIPRIME RINGS

  • Hongan, Motoshi;ur Rehman, Nadeem
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.535-542
    • /
    • 2017
  • Let R be an associative ring and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an (${\alpha},{\beta}$)-derivation of R if $d(xy)=d(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $D:R{\rightarrow}R$ is called a generalized (${\alpha},{\beta}$)-derivation of R associated with an (${\alpha},{\beta}$)-derivation d if $D(xy)=D(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].

JORDAN DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Park, Kyoo-Hong;Kim, Byung-Do;Byun, Sang-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.995-1004
    • /
    • 2000
  • In this paper we shall give a slight generalization of J. Vukman's Theorem. And show from the result that the image of a continuous linear Jordan derivation on a noncommutative Banach algebra A is contained in the radical under the condition [D(x),x]E(x) ${\in}$ rad(A) for all $x{\in}A$ . And we show some properties of the derivations on noncommutative Banach algebras.

On Semiprime Rings with Generalized Derivations

  • Khan, Mohd Rais;Hasnain, Mohammad Mueenul
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.565-571
    • /
    • 2013
  • In this paper, we investigate the commutativity of a semiprime ring R admitting a generalized derivation F with associated derivation D satisfying any one of the properties: (i) $F(x){\circ}D(y)=[x,y]$, (ii) $D(x){\circ}F(y)=F[x,y]$, (iii) $D(x){\circ}F(y)=xy$, (iv) $F(x{\circ}y)=[F(x) y]+[D(y),x]$, and (v) $F[x,y]=F(x){\circ}y-D(y){\circ}x$ for all x, y in some appropriate subsets of R.

ON (${\sigma},\;{\tau}$)-DERIVATIONS OF PRIME RINGS

  • Kaya K.;Guven E.;Soyturk M.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.189-195
    • /
    • 2006
  • Let R be a prime ring with characteristics not 2 and ${\sigma},\;{\tau},\;{\alpha},\;{\beta}$ be auto-morphisms of R. Suppose that $d_1$ is a (${\sigma},\;{\tau}$)-derivation and $d_2$ is a (${\alpha},\;{\beta}$)-derivation on R such that $d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$. In this note it is shown that; (1) If $d_1d_2$(R) = 0 then $d_1$ = 0 or $d_2$ = 0. (2) If [$d_1(R),d_2(R)$] = 0 then R is commutative. (3) If($d_1(R),d_2(R)$) = 0 then R is commutative. (4) If $[d_1(R),d_2(R)]_{\sigma,\tau}$ = 0 then R is commutative.

  • PDF

REMARKS ON GENERALIZED JORDAN (α, β)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION

  • Hongan, Motoshi;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • Let R be an associative ring with involution * and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an $({\alpha},{\beta})^*$-derivation of R if $d(xy)=d(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $F:R{\rightarrow}R$ is called a generalized $({\alpha},{\beta})^*$-derivation of R associated with an $({\alpha},{\beta})^*$-derivation d if $F(xy)=F(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [12], and a theorem of Daif and El-Sayiad [6], moreover, we generalize a theorem of Ali et al. [4] and a theorem of Huang and Koc [9] related to generalized Jordan triple $({\alpha},{\beta})^*$-derivations.

ON 𝜂-GENERALIZED DERIVATIONS IN RINGS WITH JORDAN INVOLUTION

  • Phool Miyan
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.585-593
    • /
    • 2024
  • Let 𝒦 be a ring. An additive map 𝖚 → 𝖚 is called Jordan involution on 𝒦 if (𝖚) = 𝖚 and (𝖚𝖛+𝖛𝖚) = 𝖚𝖛+𝖛𝖚 for all 𝖚, 𝖛 ∈ 𝒦. If Θ is a (non-zero) 𝜂-generalized derivation on 𝒦 associated with a derivation Ω on 𝒦, then it is shown that Θ(𝖚) = 𝛄𝖚 for all u ∈ 𝒦 such that 𝛄 ∈ Ξ and 𝛄2 = 1, whenever Θ possesses [Θ(𝖚), Θ(𝖚)] = [𝖚, 𝖚] for all 𝖚 ∈ 𝒦.

ON DERIVATIONS IN BANACH ALGEBRAS

  • Chang, Ick-Song;Jun, Kil-Woung;Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.635-643
    • /
    • 2002
  • Our main goal is to show that if there exist Jordan derivations D and G on a noncommutative (n + 1)!-torsion free prime ring R such that $$D(x)x^n-x^nG(x)\in\ C(R)$$ for all $x\in\ R$, then we have D=0 and G=0. We also prove that if there exists a derivation D on a noncommutative 2-torsion free prime ring R such that the mapping $\chi$longrightarrow[aD($\chi$), $\chi$] is commuting on R, then we have either a = 0 or D = 0.

GENERALIZED SKEW DERIVATIONS AS JORDAN HOMOMORPHISMS ON MULTILINEAR POLYNOMIALS

  • De Filippis, Vincenzo
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Let $\mathcal{R}$ be a prime ring of characteristic different from 2, $\mathcal{Q}_r$ be its right Martindale quotient ring and $\mathcal{C}$ be its extended centroid. Suppose that $\mathcal{G}$ is a nonzero generalized skew derivation of $\mathcal{R}$, ${\alpha}$ is the associated automorphism of $\mathcal{G}$, f($x_1$, ${\cdots}$, $x_n$) is a non-central multilinear polynomial over $\mathcal{C}$ with n non-commuting variables and $$\mathcal{S}=\{f(r_1,{\cdots},r_n)\left|r_1,{\cdots},r_n{\in}\mathcal{R}\}$$. If $\mathcal{G}$ acts as a Jordan homomorphism on $\mathcal{S}$, then either $\mathcal{G}(x)=x$ for all $x{\in}\mathcal{R}$, or $\mathcal{G}={\alpha}$.