• Title/Summary/Keyword: rigorous interaction

Search Result 36, Processing Time 0.029 seconds

Analysis of soil resistance on drilled shafts using proposed cyclic p-y curves in weathered soil

  • Jeong, Sangseom;Park, Jeongsik;Ko, Junyoung;Kim, Byungchul
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.505-522
    • /
    • 2017
  • A fundamental study of drilled shafts-soil systems subjected to lateral cyclic loading in weathered soil was conducted using numerical analyses. The emphasis was on quantifying the soil resistance of laterally cyclic loaded pile using 3D finite element analysis. The appropriate parametric studies needed for verifying the cyclic p-y characteristic are presented in this paper. A framework for determining the cyclic lateral load transfer curve (p-y curves) on the basis of numerical analyses is proposed. Through comparisons with results of field load tests, the three-dimensional numerical methodology in the present study is in good agreement with the general trend observed by in situ measurements and thus, represents a realistic soil-pile interaction for laterally loaded piles in soil than that of existing p-y method. It can be said that a rigorous present analysis can overcome the limitations of existing cyclic p-y methods to some extent by considering the effect of realistic three-dimensional combination of pile-soil forces. The proposed cyclic p-y curve is shown to be capable of predicting the behavior of the drilled shafts in weathered soil.

A study of the types of students' justification and the use of dynamic software (학생들의 정당화 유형과 탐구형 소프트웨어의 활용에 관한 연구)

  • 류희찬;조완영
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.245-261
    • /
    • 1999
  • Proof is an essential characteristic of mathematics and as such should be a key component in mathematics education. But, teaching proof in school mathematics have been unsuccessful for many students. The traditional approach to proofs stresses formal logic and rigorous proof. Thus, most students have difficulties of the concept of proof and students' experiences with proof do not seem meaningful to them. However, different views of proof were asserted in the reassessment of the foundations of mathematics and the nature of mathematical truth. These different views of justification need to be reflected in demonstrative geometry classes. The purpose of this study is to characterize the types of students' justification in demonstrative geometry classes taught using dynamic software. The types of justification can be organized into three categories : empirical justification, deductive justification, and authoritarian justification. Empirical justification are based on evidence from examples, whereas deductive justification are based logical reasoning. If we assume that a strong understanding of demonstrative geometry is shown when empirical justification and deductive justification coexist and benefit from each other, then students' justification should not only some empirical basis but also use chains of deductive reasoning. Thus, interaction between empirical and deductive justification is important. Dynamic geometry software can be used to design the approach to justification that can be successful in moving students toward meaningful justification of ideas. Interactive geometry software can connect visual and empirical justification to higher levels of geometric justification with logical arguments in formal proof.

  • PDF

A Study on Service Demand in Customer Relationship Management for Taiwan's Small and Medium-sized Enterprise

  • Tien, Shiaw-Wen;Chiu, Chung-Ching;Chung, Yi-Chan;Tsai, Chih-Hung;Lin, Yeong-Chen
    • International Journal of Quality Innovation
    • /
    • v.7 no.2
    • /
    • pp.19-49
    • /
    • 2006
  • Due to the globoal economic effect, Taiwan's small and medium-sized enterprise (SME) is much threatened by China. Since remarkable advances have being made in information technology, taking competition advantage for an enterprise has become a very important issue when facing rigorous global competition. However, the business of the enterprise starts with finding the customers' demands, and ends with fulfilling customers' demands. Therefore, in order to increase competition advantage for SME, the customer management must be effectively strengthened, especially by increasing customer satisfaction and maintaining good relationship with the customer. This is the key for an enterprise leading to success. The purpose of this study is aiming to discussing the relational analysis between customer and SME by viewing the four aspects of customer relationship management (CRM), which are relation marketing, customer service, customer value, and customer satisfaction. Moreover, this research will perform an empirical analysis on CRM for a typical small and medium-sized company so as to grasp its real definition and enterprises' demands. The conclusions will be drawn from our literature survey and practical experience as well as site investigation. Recommendations are evolved from discussing the interaction between customers and enterprises in improving their constructing factors and increasing benefits and values.

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구)

  • Lee, Seung-Hoon;Park, Young-Ho;Song, Myung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • Piled raft foundations have been highlighted as an economical design concept of pile foundations in recent years. However, piled raft foundations have not been widely used in Korea due to the difficulty in estimating the complex interaction effects among rafts, piles and soils. The authors developed an effective numerical program to analyze the behavior of piled raft foundations for practical design purposes and presented it briefly in this paper. The developed numerical program simulates the raft as a flexible plate consisting of finite elements with eight nodes and the raft is supported by a series of elastic springs representing subsoils and piles. This study imported another model to simulate pile groups considering non-linear behavior and interaction effects. The apparent stiffnesses of the soils and piles were estimated by iterative calculations to satisfy the compatibility between those two components and the behavior of piled raft foundations can be predicted using these stiffnesses. For the verification of the program, the analysis results about some example problems were compared with those of rigorous three dimensional finite element analysis and other approximate analysis methods. It was found that the program can analyze non-linear behaviors and interaction effects efficiently in multi-layered soils and has sufficient capabilities for application to practical analysis and design of piled raft foundations.

Enhanced solid element for modelling of reinforced concrete structures with bond-slip

  • Dominguez, Norberto;Fernandez, Marco Aurelio;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.347-364
    • /
    • 2010
  • Since its invention in the $19^{th}$ century, Reinforced Concrete (RC) has been widely used in the construction of a lot of different structures, as buildings, bridges, nuclear central plants, or even ships. The details of the mechanical response for this kind of structures depends directly upon the material behavior of each component: concrete and steel, as well as their interaction through the bond-slip, which makes a rigorous engineering analysis of RC structures quite complicated. Consequently, the practical calculation of RC structures is done by adopting a lot of simplifications and hypotheses validated in the elastic range. Nevertheless, as soon as any RC structural element is working in the inelastic range, it is possible to obtain the numerical prediction of its realistic behavior only through the use of non linear analysis. The aim of this work is to develop a new kind of Finite Element: the "Enhanced Solid Element (ESE)" which takes into account the complex composition of reinforced concrete, being able to handle each dissipative material behavior and their different deformations, and on the other hand, conserving a simplified shape for engineering applications. Based on the recent XFEM developments, we introduce the concept of nodal enrichment to represent kinematics of steel rebars as well as bonding. This enrichment allows to reproduce the strain incompatibility between concrete and steel that occurs because of the bond degradation and slip. This formulation was tested with a couple of simple examples and compared to the results obtained from other standard formulations.

A Study on Equivalent Modal Damping Values of Soil-Structure Coupling Models (지반-구조물 연계모델의 등가감쇠값에 관한 연구)

  • Park, Hyung Ghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.241-248
    • /
    • 1987
  • The theoretical backgrounds of the several methods were surveyed and reviewed to fin out the adequate one to determine equivalent modal damping values in solving the dynamic problem of soil-structure interaction by mode superposition method. Furthermore the rigorous damping matrix of equation of motion was obtained through component mode synthesis technique and used in direct integration of the equation. The analytical results by direct integration method were compared with those of mode superposition approach using the various sets of equivalent modal damping values calculated by the methods to be reviewed. Two types of superstructures and four kinds of subsurface conditions were considered and combined to make soil-structure coupled models. It was realized that dissipating energy method gives the equivalent modal damping values which lead the most similar results to direct integration ones. In case of fixed base, the responses of all methods except stiffness weighted approach are almost equal to those of direct integration method.

  • PDF

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

SAFT Equation of State for Vapor-liquid Phase Equilibria of Associating Fluid Mixtures (SAFT 상태 방정식과 회합성 유체 혼합물의 기액 상평형)

  • Chang, Jaeeon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.607-624
    • /
    • 2018
  • We review SAFT equation of state (EOS) which is based on TPT theory and statistical-mechanical principles, and confirm that it can be used as a useful tool to predict vapor-liquid phase equilibria of associating fluid mixtures. We examine theoretical structure of PC-SAFT EOS in great detail, and then assess the applicability and performance of the EOS while applying it to various mixtures containing nonpolar components, polar components and associating components in a stage-wise manner. In contrast to the conventional engineering EOS, PC-SAFT EOS can accurately predict nonideal behaviors of those mixtures without using semi-empirical binary interaction parameter. This is because the SAFT theory is based on a rigorous theoretical framework at molecular level which effectively accounts for various intermolecular interactions, and it thus provides substantial benefits in applying the SAFT EOS to complex thermodynamic phenomena of multi-component mixtures.

A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator (비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구)

  • Kim, Chae-Sil;Choi, Heon-Oh;Jung, Hoon-Hyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper describes an integrity evaluation method for emergency diesel generator(EDG) and rotor part of EDG. EDG is a very important equipment in the nuclear power plant(NPP). EDG supplies electricity to the safety-related equipments for the safety shut down of NPP in an emergency situation of earthquake. The safety of the rotor part of EDG is also important during seismic impact from earthquake. The finite element modelling of the EDG including rotor part was constructed. The modal analysis of EDG was firstly performed. The first natural frequency was calculated and revealed higher than the cutoff frequency of seismic spectrum. Then the stress analysis was done to compare with the allowable stress. The safety of the rotor part was investigated by the finite element analysis of the rotor and journal bearing interaction to find film thickness and critical speed. The seismic load was applied to rotor part in a manner that the load was a weighted static load. Analysis results showed that the maximum stress was within the range of allowable stress and the film thickness is larger than the permissible minimum thickness, and the critical speed was out of the operating speed. Hence, the structural and dynamic integrity of EDG could be confirmed by the numerical analysis method used in this paper. However, dynamic analysis of a rotating rotor and supporting bearing with the seismic impact needs to be investigated in a more rigorous method since the seismic load to the rotating part complicates the behavior of rotating system.