• 제목/요약/키워드: rigid-plastic FEM

검색결과 114건 처리시간 0.025초

Piston-Pin 제작공정의 비교해석 (A Comparisonal Analysis Among the Processes of Piston -Pin Production)

  • 김장군;장동환;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.130-137
    • /
    • 1996
  • Several cold extrusion processes to produce an axisymmetric steel piston-pin are investigated for comparing each other. Two methods among four conventinal ones are selected to be simulated using the rigid-plastic finite element method. One of the both methods using a mechanical press has one stage process and the other utilizing a cold header applies a multi-stage process to produce a final product. Because the main process is a backward extrusion, the design criteria such as the backward extrusion ration and punch diameter to depth rationare ocnsidered. FEM analysis is performed mainly for strain distributin and load-stroke relationshis. Based on the results of preliminary simulatin, both process sequences are proved to have proper charicteristics suitable for each production method in terms of maximum load. Those simulation results will be a good design criteria in the future work to advance the manufacturing process.

  • PDF

기어 블랭크 성형공정의 비교 해석 (A Comparisonal Anlaysis among the Processes of Gear Blank)

  • 최호준;김장군;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.174-184
    • /
    • 1996
  • Two methods for cold extrusion processes to produce an axisymmetric steel gear blank are investigated for comparing each other. The "classical" forming method consisting of four operations is selected first to be simulated using the rigid-plastic finite element method and uses single-die presses. The other using a fully automated transfer headers can produce the final part without interannealing. The final products must be checked at the design criteria such as area reduction, the extrusion ratio and punch diameter to depth ratio, especially punch buckling by simulations. FEM analysis is performed mainly for strain distribution, both process sequences are proved to have proper charicteristics suitable for each production method in terms of maximum load. Those simulation results will provide good design criteria in the future work to advance the manufacturing process.

  • PDF

민감도 해석을 이용한 3차원 단조공정의 최적설계에 대한 연구 (A Study on The Optimization of Three-Dimensional Forging Processes Using The Sensitivity Method)

  • 이석렬;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2005
  • A shape optimization is applied to achieve a design objective in three-dimensional forging processes. In multi-stage forging processes, among the important design aspects, the die shape fur preforming is regarded as the design variable since it influences the forged part relatively higher than the others. The rigid-plastic finite element method and the sensitivity method are employed and formulated to solve a formulated optimization problem. An approximation scheme is also used for the direction search during the optimization. The upset forging of a square box is selected as a test example in order to demonstrate and verify the optimization process of this study. After the optimization, the optimized shape of the die yields a finial product of desire shape.

  • PDF

기어블랭크 단조공정의 비교해석 및 공정설계 (A Comparative Analysis and Process Design among the Gear Blank Forging Process)

  • 최호준;허성창;장동환;황병복
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.541-553
    • /
    • 1999
  • Cold forging is a special type of forging process in which metal is forced to flow plastically under compressive force into a variety of shapes in room temperature. Gear blank, which is produced by cold forging, is concerned with the production method of transmission gear. Based on the results of simulation of the current four-stage process, the gear blank forging process for improving the conventional process sequence is designed. The rigid plastic finite element analysis for improving the conventional process. The new process consists of three stage operations with one annealing treatment after first operation. Based on the results of simulation of the proposed process, a required equipment could be selected. The new designed process appears to be more economical in producing the gear blank.

  • PDF

L형 단면의 ?드로잉 가공에 대한 실험적 연구 (Experimental Study on the Deep Drawing Process for L-shape Cross Section)

  • 김상진;양대호;서대교
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.281-287
    • /
    • 1996
  • Two kinds of blank shapes optimum and square are adopted to investigate formability. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup depth and strain distribution are measured experimentally for the products of the two kinds of blank shapes which are optimum and square. it is confirmed that deeper cup without severe thickness reduction can be obtained from the optimum shape.

  • PDF

다단계 ?드로잉 가공에 대한 실험적 연구 (Experimental Study on the Multi-stage Deep Drawing Process)

  • 박민호;김상진;서대교
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.288-296
    • /
    • 1996
  • A method of determining an optimum blank shape for non-circular deep drawing process is extended to the multi-stage deep drawing process. As an example concentric two-stage square deep drawing process is considered and the ideal blank shape with uniform cup height and without flange part after the process is constructed by the backward tracing of rigid plastic FEM. The conventional square blank shapes are also adopted for the comparison of two cases. As a result it is confirmed that the drawn products with better thickness strain distribution and deeper cup depth could be obtained by the suggested ideal blank shapes.

  • PDF

오목형 단면 딥드로잉에서의 성형성 (Formability of deep drawing process for reentrant cross section)

  • 박민호;김상진;서대교
    • 소성∙가공
    • /
    • 제5권2호
    • /
    • pp.138-144
    • /
    • 1996
  • The differences of formability with maximum cup depth of drawn product and thickness strain distribution are compared for two kinds of blank shapes which are suggested optimum shape and conventional square shape. The suggested blank is determined by backward tracing technique of rigid-plastic FEM. The deeper cup without wrinkle and flange part could be obtained from the suggested blank shape however the cross sevtion sup from the square blank could not be kept smooth thickness strain distribution and defended those phenomena..

  • PDF

축대칭 압출금형의 피로수명예측에 관한 연구 (A Study on the Prediction of Fatigue Life in the Axi-symmetric Extrusion Die)

  • Ahn, S.H.;Kim, T.H.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.80-87
    • /
    • 1996
  • The present paper will give some results of the fatigue behavior of typical axi-symmetric forward extrusion die. The extrusion process is analyzed by rigid-plastic FEM and the deformation analysis of extrusion die is conducted by elasto-plastic FEM. To approach the crack problem LEFM (Linear Elastic Fracture Mechanics) is introduced. Using special element in order to conside the sigularity of stress/ strain in the vicinity of the crack tip, stress intensity factor and the effective stress intensity factor is calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law and maximum principal criterion to these data, then, the angle and the direction of fatigue crack propagation is simulated. In result, it is proved that the simulated fatigue crack propagates in the zigzag path along the radial direction and fatigue life of the extrusion die is evaluated by using the computed crack growth rate.

  • PDF

심용접 튜브를 사용한 벌지 성형에서의 터짐불량 예측 (Numerical prediction of bursting failure in bulge forming using a seamed tube)

  • Kim, J.;Kim, Y.W;B.S. Kang
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.240-243
    • /
    • 2003
  • Finite element analyses for bursting failure prediction in bulge forming under combined internal pressure and independent axial feeding are carried out. By means of the FEM combined with Oyane's ductile fracture criterion based on Hills quadratic plastic potential, the forming limit and bursting pressure level are investigated for a seamed tube that comprises of weldment, heat affected zone(HAZ) and base material parts. Especially, in order to determine the material property of HAZ tensile tests for the base material and the weld metal are executed based on iso-strain approach. Finally, through a series of bulge forming simulations with consideration of the weldment and HAZ it is concluded that the proposed method would be able to predict the bursting pressure and fracture initiation site more realistically, so the approach can be extended to a wide range of practical bulge forming processes.

  • PDF

온간단조에서의 소성변형과 결정입자 변화와의 관계 (Study on the Relationship between Plastic Deformation and Crystal Grain Change in Warm Forging)

  • 제진수;김재훈
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.461-472
    • /
    • 1996
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM10C carbon steel is studied. If the carbon steel is deformed at warm forging temperature(about recrystallization range), material properties are changed due to microstructural chanre of the crystal grain and cementite of the internal part. Some experimental values are investigated in terms of the elliptic degree of cementite, the grain size of cementite and ferrite grain size. When plastic deformation proceeds, the elliptic degree of cementite becomes larger and the grain size of cementite particle becomes small. In addition, the size of ferrite grain becomes fines by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging was calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result, At the level of effective strain 0.3, dynamic recovery and dynamic recrystallization begin and at the level of over 2.5, the organization of material has better internal structure that is suitable for the following cold forming.