• Title/Summary/Keyword: rigid system

Search Result 1,208, Processing Time 0.031 seconds

A REFINED SEMI-ANALYTIC DESIGN SENSITIVITIES BASED ON MODE DECOMPOSITION AND NEUMANN SERIES IN REDUCED SYSTEM (축소모델에서 강체모드 분리와 급수전개를 통한 준해석적 민감도 계산 방법)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.491-496
    • /
    • 2003
  • In sensitivity analysis, semi-analytical method(SAM) reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Recently such errors of SAM resulted by the finite difference scheme have been improved by the separation of rigid body mode. But the eigenvalue should be obtained first before the sensitivity analysis is performed and it takes much time in the case that large system is considered. In the present study, by constructing a reduced one from the original system, iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The sensitivity analysis is performed by the eigenvector acquired from the reduced system. The error of SAM caused by difference scheme is alleviated by Von Neumann series approximation.

  • PDF

Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System (기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구)

  • 김지원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

Analysis of light-frame, low-rise buildings under simulated lateral wind loads

  • Fischer, C.;Kasal, B.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.89-101
    • /
    • 2009
  • The Monte Carlo procedure was used to simulate wind load effects on a light-frame low-rise structure of irregular shape and a main wind force resisting system. Two analytical models were studied: rigid-beam and rigid-plate models. The models assumed that roof diaphragms were rigid beam or rigid plate and shear walls controlled system behavior and failure. The parameters defining wall stiffness, including imperfections, were random and included wall stiffness, wall capacity and yield displacements. The effect of openings was included in the simulation via a set of discrete multipliers with uniform distribution. One and two-story buildings were analyzed and the models can be expanded into multiple-floor structures provided that the assumptions made in this paper are not violated.

Analysis of Booming Noise using Rigid Body Information of Parts (부재의 강체 정보를 이용한 부밍 소음의 해석)

  • Hwang, Woo-Seok;Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1699-1703
    • /
    • 2000
  • While the booming occurs in a cabin, the powertrain and subframes which are the main sources and paths of the booming, show the rigid body motions. This paper presents a technique to predict the booming noise in a car using the rigid body information of the important parts. The rigid body information comes from the CAD data, from which we can predict the response of the complex system. Since the mechanism of this technique is very similar to the finite element formulation, we can apply it to the complex system with ease.

  • PDF

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

Crack-contact problem for an elastic layer with rigid stamps

  • Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.285-296
    • /
    • 2011
  • The plane crack-contact problem for an infinite elastic layer with two symmetric rectangular rigid stamps on its upper and lower surfaces is considered. The elastic layer having an internal crack parallel to its surfaces is subjected to two concentrated loads p on its upper and lower surfaces trough the rigid rectangular stamps and a pair of uniform compressive stress $p_0$ along the crack surface. It is assumed that the contact between the elastic layer and the rigid stamps is frictionless and the effect of the gravity force is neglected. The problem is reduced to a system of singular integral equations in which the derivative of the crack surface displacement and the contact pressures are unknown functions. The system of singular integral equations is solved numerically by making use of an appropriate Gauss-Chebyshev integration formula. Numerical results for stress-intensity factor, critical load factor, $\mathcal{Q}_c$, causing initial closure of the crack tip, the crack surface displacements and the contact stress distribution are presented and shown graphically for various dimensionless quantities.

A Study on Rigid body Placement Task of based on Robot Vision System (로봇 비젼시스템을 이용한 강체 배치 실험에 대한 연구)

  • 장완식;신광수;안철봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.100-107
    • /
    • 1998
  • This paper presents the development of estimation model and control method based on the new robot vision. This proposed control method is accomplished using the sequential estimation scheme that permits placement of the rigid body in each of the two-dimensional image planes of monitoring cameras. Estimation model with six parameters is developed based on the model that generalizes known 4-axis scara robot kinematics to accommodate unknown relative camera position and orientation, etc. Based on the estimated parameters, depending on each camera the joint angle of robot is estimated by the iteration method. The method is experimentally tested in two ways, the estimation model test and a three-dimensional rigid body placement task. Three results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as assembly and welding.

  • PDF

A study on the stability boundary of a virtual spring model with a virtual mass (가상스프링 모델의 안정성 영역에 대한 가상질량의 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system. A haptic system consists of a haptic device, a sampler, a virtual rigid body and zero-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. According to the virtual mass and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. As the virtual mass increases, the value of the virtual spring to guarantee the stability gradually increases and then decreases after reaching the maximum value. These simulation results show that the addition of the virtual mass enables to expand the stability boundary of the virtual spring.

Controll Characteristics of Electromagnetically Levitated Rigid Body Bogie-Truck and Twist Response Type of Bogie-Truck (강휴태차(剛休台車)와 비틀림 응답형태차(答型台車)의 제어특성(制御特性))

  • Kwon, B.I.;Masada, E.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.142-145
    • /
    • 1989
  • The electromagnetic suspension system, which is a kind of magnetic levitation, can be categorized into two groups; separate lift & guidance system and combined lift & guidance system. This paper deals with the latter system, in which lift and guidance forces are generated by a pair of staggered magnets with the inverted U- shaped rail. In this work, a rigid body bogie-truck and a twist response type of bogie-truck, which are constructed by two magnetic wheels consist of two staggered magnet pairs, are modeled, and curvature running characteristics of both types obtained by simulation are presented. Simulation result showed that curvature running characteristics of twist response type of bogie-truck is better than that of rigid body bogie-truck.

  • PDF