• 제목/요약/키워드: rigid rod

검색결과 58건 처리시간 0.022초

판에 고속 충돌하는 봉의 동적 파괴에 관한 연구 (Study on the Dynamic Fracture of Rod Impacting on Plate at High Speed)

  • 조재웅;한문식
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.108-112
    • /
    • 2007
  • This study analyzes the dynamic fracture phenomenon that aluminum rod impacts aluminum plate or rigid plate and deforms. The value of von-Mises stress in the instance that aluminum rod deforms on rigid plate after contact becomes 1.3 times as large as that in the instance of contact. On the contrary, the value of von-Mises stress in the instance that aluminum rod goes through aluminum plate after contact becomes 0.7 times as small as that in the instance of contact. The value of internal energy in the instance that aluminum rod contacts aluminum plate becomes 2.3 times as large as that in the instance that aluminum rod contacts rigid plate. But the value of kinetic energy in the instance that aluminum rod contacts aluminum plate becomes 0.9 times as small as that in the instance that aluminum rod contacts rigid plate. The value of internal energy in the instance that aluminum rod goes through aluminum plate after contact becomes 0.7 times as small as that in the instance that aluminum rod impacts rigid plate and deforms. And the value of sliding energy in the instance that aluminum rod contacts aluminum plate becomes 0.2 times as small as that in the instance that aluminum rod contacts rigid plate. The value of total energy in case that aluminum rod impacts aluminum plate becomes 0.9 times as small as that in the case that aluminum rod impacts rigid plate.

마찰력이 개재된 강체역학에서 불일치의 해소 $-L\ddot{o}tstedt$의 미끄러지는 막대 (Resolving the Inconsistency of Rigid Body Frictional Mechanics $-L\ddot{o}tstedt$'s Sliding Rod)

  • 한인환
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.866-875
    • /
    • 1994
  • The problem of a rigid rod sliding on a rough horizontal surface in the plane is analyzed, which is commonly cited as an example of the inconsistency of rigid body frictional mechanics. The inconsistency is demonstrated by analyzing the normal reaction force at the contact point with the surface, and the concept of tangential collision is derived to resolve the inconsistency. Using the Poisson's hypothesis for the coefficient of restitution and Coulomb's law for the friction, the general methodology for solving the tangential collision is presented. The problem of the inconsistency generated in the sliding rod is completely resolved, building the concept of the tangential collision and adopting the theory of frictional impact. The result presented in this paper will obviate a generic obstacle to the development of simulation packages for planar rigid body mechanical systems with temporary contacts, and planning efficient motion strategies for robot manipulators.

높은 세장비를 가진 침상형 입자의 동적 거동 해석을 위한 중첩형 강체막대모델을 이용한 이산요소법 (Discrete Element Method using the Superposed Rigid-Rod Model for the Dynamic Behavior of Needle-Shaped Powder with a High Aspect Ratio)

  • 김영호;박준영
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.22-27
    • /
    • 2018
  • One problem of the Discrete Element Method is the assumption of a spherical particle shape, which reduces the computing time but significantly limits the application of the DEM to analysis. This limitation can be overcome by a recently developed rigid-rod model. However, the rigid-rod model has an essential problem related with friction: it always contains friction error because of the bumpy surface. To overcome this issue, we suggest a superposed rigid-rod model in this paper. The superposed rigid-rod model is notably consistent with the theoretical value in terms of the velocity and angular velocity after the collision. The estimated error is negligible(less than 2%). Then, the developed model is applied to hopper discharging. The developed model shows no problem in the discharging flow from the hopper.

강소성 유한요소법을 이용한 원형봉에서 정사각재 인발공정에 관한 연구 (A Study on the Drawing Process of Square Rod from Round Bar by Using the Rigid-Plastic Finite Element Method)

  • 김호창;김용철;최영;김병민
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.145-151
    • /
    • 1998
  • Unlike the drawing of round section from round bar, the shaped drawing like polygonal section is known to have influence not only drawing stress but also corner filling. Therefore. this study analyze the drawing process of suqare rod from round bar using nonsteady state rigid-plastic FEM. To investigate effects of process variables of the drawing process of square rod from round bar, FE-simulations with variety of reduction in area and semi-die angle for a given frictional condition have been conducted. By this results, it has to suggest optimal process condition on the drawing stress and the corner filling. In addition, it has determined forming limit considering necking and bulging.

  • PDF

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권5호
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

원형봉에서 정사각재 인발공정의 유한요소 해석 (Finite Element Analysis for the Drawing of Square Rod from Round Bar)

  • 최영;김호창;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.205-209
    • /
    • 1998
  • Unlike the drawing of round section from round bar, the shaped drawing like polygonal section is known to have influence not only drawing stress but also comer filling. Therefore, this study analyze the drawing process of suqare rod from round bar using nonsteady state rigid-plastic FEM. To investigate effects of process variables of the drawing process of square rod from round bar, FE-simulations with variety of reduction in area and semi-die angle for a given frictional condition have been conduction. By this results, it has to suggest optimal process condition on the drawing stress and the comer filling. In addition, it has determined forming limit considering necking and bulging.

  • PDF

관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석 (High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect)

  • 유요한;박근;양동열
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.

구리 피복 알루미늄 봉의 정수압 압출에 의한 성형 (Hydrostatic Extrusion of Copper-Clad Aluminum Rod)

  • 박훈재;나경환;조남선;이용신
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.123-130
    • /
    • 1995
  • The present study is concerned with the hydrostatic extrusion process for the copper-clad aluminum rod through metallurgical joining. The rigid viscoplastic finite element analyses are performed for the steady state extrusion process of the bimetal rod. An algorithm for finding the interface profile of the bimetal rod by tracking a particle path in Eulerian domain is presented. The distributions of the effective strain rate, equivalent stress and hardness are examined for the several extrusion ratios. Experiments are also carried out for the copper-clad aluminum rod at room temperature. It is found out that the finite element predictions are generally in good agreement with the experimental observations. The detail comparisons of the extrusion loads predicted by the element method with those by experiments are given.

  • PDF

침상형 입자의 동적 거동 해석을 위한 강체 막대형 이산요소법 모델 개발 (A New Rigid Rod Model for the Discrete Element Method to Analyze the Dynamic Behavior of Needle-shaped Powder)

  • 안성해;박준영
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.149-154
    • /
    • 2017
  • Numerous studies of the dynamic behavior of powders have been performed by Discrete Element Method (DEM). The behavior of powders can be analyzed using the DEM assuming that the powder is composed of spherical particles. Moreover, the assumption of spherical particle reduces the computing time significantly. However, the biggest problem with this assumption is the real shape of the particles. Some types of particles, such as calcium carbonate and colloidal copper, are needle shaped. Thus, analysis based on spherical particles can produce errors because of the incorrect assumption. In this research, we developed a new model to simulate needle-shaped particles using the DEM. In the model, a series of particles are connected and regarded as a rod. There is no relative motion among the particles. Thus, the behavior of the rod is rigid motion. To validate the developed model, we carried out the drop-and-bounce test with different initial angles. The results showed negligible error of less than 2%.

강소성 유한요소법과 신경망을 이용한 직사각재 인발공정에 관한 연구 (A Studyon the Drawing of Rectangular Rod from Round Bar by using Rigid Plastic FEM and Neural Network)

  • 김용철;최영;김병민;최재찬
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.331-339
    • /
    • 1999
  • In this study, to analyze the shaped drawing process from round bar, the practical conical die with considering die radius and bearing was defined by a mathematical expression, and also a simple technique for initial mesh generation to the shaped drawing process was proposed. The drawing of rectangular section from round bar, one of the shaped drawing process, has been simulated by using non-steady state 3D rigid plastic finite element method in order to evaluate the influence of semi-die angle and reduction in area to corner filling. Other process variables such as friction constant, rectangular ratio, die radius and bearing length were fixed during the simulation. An artificial neural network has been introduced to obtain the optimal process conditions which gave rise to a fast simulation.

  • PDF