• 제목/요약/키워드: rigid robot

검색결과 143건 처리시간 0.026초

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

수직선 특징을 이용한 이동 로봇의 자기 위치 추정 (Localization for Mobile Robot Using Vertical Line Features)

  • 강창훈;안현식
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.937-942
    • /
    • 2003
  • We present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images from the surroundings having vertical line edges by one camera. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right regions of the each line are computed by using the properties of the line and a region growing method. The pattern vectors are matched with the feature points of the map by comparing the color information and the geometrical relationship. From the perspective transformation and rigid transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF

Robust Back-Stepping Control with Polynomial-type PD input for Flexible Joint Robot Manipulators

  • Lee, Jae-Young;Park, Jong-Hyeon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.927-932
    • /
    • 2007
  • This paper proposes a robust back-stepping control with polynomial-type PD input for flexible joint robot manipulators to overcome parameter uncertainty. In the first step, a fictitious control is designed with polynomial-type PD input for the rigid link dynamic by the H-infinity control method. In second and third steps, the other fictitious control and real control are designed using saturation control and polynomial-type PD input based on the Lyapunov's second method. In each step, the designed robust inputs satisfy the L2-gain, which is equal to or less than gamma in the closed loop system. In contrast with the previous researches, the proposed method proves performance relations with PD gain from the robust gain. The performance robustness of the proposed control is verified through a 2-DOF robot manipulator with joint flexibility.

  • PDF

유연한 수평 다관절형 로봇의 진동제어 (Vibration control of a flexible SCARA type robot)

  • 용대중;임승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.225-228
    • /
    • 1996
  • This paper concerns a SCARA type robot with the second arm flexible. Its equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are first determined based on the inverse dynamics of the latter. Next, in order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified with a prescribed degree of stability. The numerical simulations results show the satisfactory control performance.

  • PDF

강한 결합조건을 갖는 두 이동로봇의 협동 운동계획 (Cooperative motion planning of two tightly-coupled mobile robots)

  • 이승환;이승하;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.948-954
    • /
    • 1999
  • In this paper, we propose a cooperative motion planning algorithm for two tightly-coupled mobile robots. Specifically, the considered cooperative work is that two mobile robots should transfer a long rigid object along a predefined path. To resolve the problem, we introduce a master-slave concept for two obile robots having the same structure. According to the velocity of the master robot and the positions of two robots on the path, the velocity of the slave robot is determined. The slave normally tracks the master's motion, but in case that the velocity of the slave exceeds the velocity limit, the roles of the robots should be interchanged. The effectiveness of the proposed algorithm is proved by computer simulations.

  • PDF

로봇 메니플레이터의 혼합 추적 제어를 위한 강인 가변구조제어기 (A Robust Variable Structure Controller for the Mixed Tracking Control of Robot Manipulators)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1908-1913
    • /
    • 2010
  • In this paper, a robust variable structure tracking controller is designed for the mixed tracking control of highly nonlinear rigid robot manipulators for the first time. The mixed control problem under consideration is extended from the basic tracking problem, with the different initial condition of both the planned trajectory and link of robots. This control problem in robotics is not addressed to until now. The tracking accuracy to the sliding trajectory after reaching is analyzed. The stability of the closed loop system is investigated in detail in Theorem 2. The results of Theorem 2 provide the stable condition for control gains. Combing the results of Theorem 1 and Theorem 2 gives rise to possibility of designing the improved variable structure tracking controller to guarantee the tracking error from the determined sliding trajectory within the prescribed accuracy after reaching. The usefulness of the algorithm has been demonstrated through simulation studies on the mixed tracking control of a two.link robot under parameter uncertainties and payload variations.

수동 속도장 제어법을 이용한 협조 이동로봇 시스템의 분산제어 (Decentralized Control of Cooperative Mobile Robot Systems Using Passive Velocity Field Control Method)

  • 서진호;이권순
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.129-138
    • /
    • 2004
  • In this paper, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative 3-wheeled mobile robots, and these subsystem are under nonholonomic constraints. The considered robotic systems convey a common rigid object in a horizontal plain. Moreover we will proof the passivity and robustness for cooperative mobile robotic systems with decentralized passive velocity field control. Finally, The effectiveness of proposed control algorithm is examined by numerical simulation for cooperation tasks with 3-wheeled mobile robot systems.

신경회로망을 이용한 유연한 로보트 빔의 위치제어에 관한 연구 (A Study on the Position Control of Flexible Robot Beam Using Neural Networks)

  • 탁한호;이상배
    • 한국항해학회지
    • /
    • 제21권1호
    • /
    • pp.109-118
    • /
    • 1997
  • In this paper, applications of multilayer neural networks to control of flexible robot beam are considered. The multilayer nerual networks can be used to approximate any continuous function to a desired degree of accuracy and the weights are updated by Gradient Method. When a flexible beam is rotated by a motor through the fixed end, transverse vibration may occur. The motor torque should be controlled insuch a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipulators so that is arrested as soon as possbile at the end of rotation. Accurate control of lightweight beam during the large changes in configuration common to robotic tasks requires dynamic models that describe both rigid body motions, as well as the flexural vibrations. Therefore, a linear dynamic state-space model of for a single link flexible robot beam is derived and PD controller, LQP controller, and inverse dynamical neural networks controller are composed. The effectiveness the proposed control system is confirmed by computer simulation.

  • PDF

6축 병렬형 순응기구를 이용한 위치/힘 동시제어 (Kinestatic Control using Six-axis Parallel-type Compliant Device)

  • 김한성
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.421-427
    • /
    • 2014
  • In this paper, the kinestatic control algorithm using a six-axis compliant device is presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, this method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment. This kinestatic control method is used to simply control the position of an industrial robot with twists of compensation, which can be decomposed into twists of compliance and twists of freedom. A simple design method of a six-axis parallel-type compliant device with a diagonal stiffness matrix is presented. A compliant device prototype and kinestatic control hardware system and programming were developed. The effectiveness of the kinestatic control algorithm was verified through two kinds of kinestatic control experiments.