• Title/Summary/Keyword: rigid robot

Search Result 143, Processing Time 0.024 seconds

An Optimal Control Approach to Robust Control of Robot Manipulators (로봇 매니퓰레이터의 강인제어를 위한 최적제어로의 접근)

  • 김미경;강희준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.176-182
    • /
    • 2003
  • An optimal control approach to robust control design is proposed in this study for rigid robotic systems under the unknown load and the other uncertainties. The uncertainties are quadratically bounded for some positive definite matrix. Iterative method to find the matrix is shown. Simulations are made for a weight-lifting operation of a two-link manipulator and the robust control performance of robotic systems by the proposed algorithm is remarkable.

Robust Control of Biped Robot Using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

Precise Localization for Mobile Robot Based on Cell-coded Landmarks on the Ceiling (천정 부착 셀코드 랜드마크에 기반한 이동 로봇의 정밀 위치 계산)

  • Chen, Hongxin;Wang, Shi;Yang, Chang-Ju;Lee, Jun-Ho;Kim, Hyong-Suk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.75-83
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses color-coded landmarks on the ceiling and a camera is installed on the robot facing the ceiling. The proposed "cell-coded map", with the use of only nine different kinds of color-coded landmarks distributed in a particular way, helps reduce the complexity of the landmark structure. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.

Research on Technology Status and Development Direction of Wearable Robot (웨어러블 로봇의 기술 현황 조사 및 개발 방향 제안 연구)

  • Kim, Hye Suk;Koo, Da Som;Nam, Yun Ja;Cho, Kyu-Jin;Kim, Seonyoung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.5
    • /
    • pp.640-655
    • /
    • 2019
  • Technology status was investigated by analyzing patents and development cases of wearable robots. Development direction of wearable robot for wearability was also suggested by understanding the problems of wearability from development cases through the FGI technique. The number of patents per technical field was the most in the field of strength support, but AI in the technology field was different in each country; Korea was found to be poor in the category of daily living assistance. The number of patents by technology category was the most in the category of muscular strength assistance. However, the values of AI in the technology category were different in each country; Korea was found to be poor in the category of daily living assistance. Development cases were focused on rehabilitation, so development is not fulfilled uniformly by use purpose. By wearing body parts, robots with single function type were mainly developed. Rigid material robots were mainly developed. It was confirmed that wearable robot technology is not developed evenly in the category of application because it is in the early stage of the technical proposal and centered on main performance improvement. We derived twelve wearable conditions for wearable robots: Shape and Size Appropriateness, Movement Appropriateness, Composition Appropriateness, Physiological Appropriateness, Performance Satisfaction, Ease of Operation, Safety, Durability, Ease of Dressing, Ease of Cleaning, Portability and Ease of Storage and Appearance Satisfaction. Finally, the development direction of a wearable robot for each wearable condition was suggested.

Flexible Loop Wheel Mechanism for Intestine Movement (탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘)

  • Im, Hyeong-Jun;Min, Hyeon-Jin;Kim, Byeong-Gyu;Kim, Su-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.

Soft Robots Based on Magnetic Actuator (자성 액추에이터 기반의 소프트 로봇)

  • Nor, Gyu-Lyeong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.401-415
    • /
    • 2021
  • Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

A Study on Object Recognition for Safe Operation of Hospital Logistics Robot Based on IoT (IoT 기반의 병원용 물류 로봇의 안전한 운행을 위한 장애물 인식에 관한 연구)

  • Kang, Min-soo;Ihm, Chunhwa;Lee, Jaeyeon;Choi, Eun-Hye;Lee, Sang Kwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.141-146
    • /
    • 2017
  • New infectious diseases such as MERS have been in need of many measures such as initial discovery, isolation, and crisis response. In addition, the culture of hospitals is changing, such as the general public 's visiting and Nursing Care Integration Services. However, as the qualifications and regulations of medical personnel in hospitals become rigid, overseas such as linens, wastes movements are replacing possible works with robots. we have developed a hospital logistics robot that can carry out various goods delivery within a hospital, and can move various kinds of objects safely to a desired location. In this thesis, we have studied a hospital logistics robot that can carry out various kinds of goods delivery within the hospital, and can move various kinds of objects such as waste, and linen safely to a desired location. The movement of a robot in a hospital may cause a collision between a person and an object, so that the collision must be prevented. In order to prevent collision, it is necessary to recognize whether or not an object exists in the movement path of the robot. And if there is an object, it should recognize whether it moves or not. In order to recognize human beings and objects, we recognize the person with face/body recognition technology and generate the context awareness of the object using 3D Vision image segmentation technology. We use the generated information to create a map that considers objects and person in the robot moving range. Thus, the robot can be operated safely and efficiently.

Trend of Soft Wearable Robotic Hand (유연한 착용형 손 로봇 기술 동향)

  • In, Hyunki;Jeong, Useok;Kang, Brian Byunghyun;Lee, Haemin;Koo, Inwook;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.531-537
    • /
    • 2015
  • Hand function is one of the essential functions required to perform the activities of daily living, and wearable robots that assist or recover hand functions have been consistently developed. Previously, wearable robots commonly employed conventional robotic technology such as linkage which consists of rigid links and pin joints. Recently, as the interest in soft robotics has increased, many attempts to develop a wearable robot with a soft structure have been made and are in progress in order to reduce size and weight. This paper presents the concept of a soft wearable robot composed of a soft structure by comparing it with conventional wearable robots. After that, currently developed soft wearable robots and related issues are introduced.