• Title/Summary/Keyword: rigid robot

Search Result 143, Processing Time 0.026 seconds

A Study on the Simulation of Operational Characteristics of Industrial Robot for Automated Manufacturing System (생산자동화 시스템을 위한 산업용 로봇의 운전특성 시뮬레이션에 관한 연구)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • This paper deals with 3D simulation of industrial robot for automated manufacturing system. In order to evaluate the operational characteristics of the industrial robot system in the worst case motion scenario, flexible - rigid multibody analysis was performed. Then, the rigid body dynamics analysis was performed and the results were compared with the flexible - rigid multibody analysis. Modal analysis was also performed to confirm the dynamic characteristics of the robot system. In the case of the flexible-rigid multibody simulation, only the structural members of interest were modeled as elastic bodies to confirm the stress state. The remaining structural members were modeled as rigid bodies to reduce computer resources.

A Study on Rigid body Placement Task of based on Robot Vision System (로봇 비젼시스템을 이용한 강체 배치 실험에 대한 연구)

  • 장완식;신광수;안철봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.100-107
    • /
    • 1998
  • This paper presents the development of estimation model and control method based on the new robot vision. This proposed control method is accomplished using the sequential estimation scheme that permits placement of the rigid body in each of the two-dimensional image planes of monitoring cameras. Estimation model with six parameters is developed based on the model that generalizes known 4-axis scara robot kinematics to accommodate unknown relative camera position and orientation, etc. Based on the estimated parameters, depending on each camera the joint angle of robot is estimated by the iteration method. The method is experimentally tested in two ways, the estimation model test and a three-dimensional rigid body placement task. Three results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as assembly and welding.

  • PDF

The Cognition of Non-Ridged Objects Using Linguistic Cognitive System for Human-Robot Interaction (인간로봇 상호작용을 위한 언어적 인지시스템 기반의 비강체 인지)

  • Ahn, Hyun-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1115-1121
    • /
    • 2009
  • For HRI (Human-Robot Interaction) in daily life, robots need to recognize non-rigid objects such as clothes and blankets. However, the recognition of non-rigid objects is challenging because of the variation of the shapes according to the places and laying manners. In this paper, the cognition of non-rigid object based on a cognitive system is presented. The characteristics of non-rigid objects are analysed in the view of HRI and referred to design a framework for the cognition of them. We adopt a linguistic cognitive system for describing all of the events happened to robots. When an event related to the non-rigid objects is occurred, the cognitive system describes the event into a sentential form and stores it at a sentential memory, and depicts the objects with a spatial model for being used as references. The cognitive system parses each sentence syntactically and semantically, in which the nouns meaning objects are connected to their models. For answering the questions of humans, sentences are retrieved by searching temporal information in the sentential memory and by spatial reasoning in a schematic imagery. Experiments show the feasibility of the cognitive system for cognizing non-rigid objects in HRI.

Development of Robot Vision Control Schemes based on Batch Method for Tracking of Moving Rigid Body Target (강체 이동타겟 추적을 위한 일괄처리방법을 이용한 로봇비젼 제어기법 개발)

  • Kim, Jae-Myung;Choi, Cheol-Woong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.161-172
    • /
    • 2018
  • This paper proposed the robot vision control method to track a moving rigid body target using the vision system model that can actively control camera parameters even if the relative position between the camera and the robot and the focal length and posture of the camera change. The proposed robotic vision control scheme uses a batch method that uses all the vision data acquired from each moving point of the robot. To process all acquired data, this robot vision control scheme is divided into two cases. One is to give an equal weight for all acquired data, the other is to give weighting for the recent data acquired near the target. Finally, using the two proposed robot vision control schemes, experiments were performed to estimate the positions of a moving rigid body target whose spatial positions are unknown but only the vision data values are known. The efficiency of each control scheme is evaluated by comparing the accuracy through the experimental results of each control scheme.

A study on the rigid bOdy placement task of robot system based on the computer vision system (컴퓨터 비젼시스템을 이용한 로봇시스템의 강체 배치 실험에 대한 연구)

  • 장완식;유창규;신광수;김호윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1114-1119
    • /
    • 1995
  • This paper presents the development of estimation model and control method based on the new computer vision. This proposed control method is accomplished using a sequential estimation scheme that permits placement of the rigid body in each of the two-dimensional image planes of monitoring cameras. Estimation model with six parameters is developed based on a model that generalizes known 4-axis scara robot kinematics to accommodate unknown relative camera position and orientation, etc. Based on the estimated parameters,depending on each camers the joint angle of robot is estimated by the iteration method. The method is tested experimentally in two ways, the estimation model test and a three-dimensional rigid body placement task. Three results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as assembly and welding.

  • PDF

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

Estimation on Heavy Handling Robot using Flexible-Rigid Multibody Analysis (변형체-강체 다물체 해석을 이용한 초중량물 핸들링로봇의 평가)

  • Kim, Jin-Kwang;Ko, Hae-Ju;Park, Ki-Beom;Kim, Tae-Gyu;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • A flexible-rigid multibody analysis was pen armed to examine the dynamic response of a heavy handling robot system under a worst motion scenario. A rigid body dynamics analysis was solved and compared with flexible-rigid multibody analysis. The modal analysis and test were also carried out to establish the accuracy and the validation of the finite element model used in this paper. For the flexible-rigid multibody simulation, stresses in several major bodies were interested, so that those parts are flexible and other parts are modeled as rigid body in order to reduce computer resources.

Smart Phone Robot Made of Smart Soft Composite (SSC)

  • Wang, Wei;Rodrigue, Hugo;Lee, Jang-Yeob;Han, Min-Woo;Ahn, Sung-Hoon
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Soft morphing robotics making use of smart material and based on biomimetic principles are capable of continuous locomotion in harmony with its environment. Since these robots do not use traditional mechanical components, they can be built to be light weight and capable of a diverse range of locomotion. This paper illustrates a flexible smart phone robot made of smart soft composite (SSC) with inchworm-like locomotion capable of two-way linear motion. Since rigid components are embedded within the robot, bending actuators with embedded rigid segments were investigated in order to obtain the maximum bending curvature. To verify the results, a simple mechanical model of this actuator was built and compared with experimental data. After that, the flexible robot was implemented as part of a smart phone robot where the rigid components of the phone were embedded within the matrix. Then, experiments were conducted to test the smart phone robot actuation force under different deflections to verify its load carrying capability. After that, the communication between the smart phone and robot controller was implemented and a corresponding phone application was developed. The locomotion of the smart phone robot actuated through an independent controller was also tested.

Experimental Parameter Identification and Performance Analysis of a Fish Robot with Ostraciiform Swimming Mode using Rigid Caudal Fins (고체형 꼬리 지느러미로 오스트라키폼 유영을 하는 물고기 로봇의 패러미터 식별 및 성능 분석)

  • Chan, Wai Leung;Lee, Gi-Gun;Kim, Byung-Ha;Choi, Jung-Min;Kang, Tae-Sam
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.197-208
    • /
    • 2010
  • The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.