• Title/Summary/Keyword: rigid foundation

Search Result 159, Processing Time 0.023 seconds

Study on the Rational Construction Method Using Analysis of the Case Study of PHC Pile Foundation in Song-Do Area (송도지역 내 PHC 말뚝기초 적용사례분석을 통한 적정 시공방법 연구)

  • Lee, Byengho;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Song-Do international city is the area developed in large-scale land reclamation. Song-Do area consists of reclamation layer, sedimentary layer(loose silt, soft clay and sand alternating) and residual layer from the ground surface. Therefore, using pile foundation is inevitable to build structures safely. In this area, driven PHC piles have been generally constructed in terms of environmental and economic conditions. As a result of analyzing 4 sites in Song-Do district 5 and 7 recently, the method of driving pile has many problems because of existence of rigid soil in sedimentary layer and installation of more than 30m piles. In this case, when installing piles by drive after pre-boring up to appropriate depth, the results of constructability analysis were very good. And in the economic efficiency, although 4% of construction cost rose, it was a very slight increase in comparison with improvement of workability. In the case of the stability, more than 70% compared to the allowable stress of piles was satisfied through the load test. As a result, when PHC piles is installed in Song-Do district, the proper construction method is that piles are located at bearing layer after boring rigid sand layer.

Reduction Factor of the Site Coefficient due to the Foundation Embedment in the Soft Soil Layer for the Seismic Analysis of a Building (건축물의 지진해석을 위한 연약지반에 묻힌 기초로 인한 지반증폭계수에 대한 저감계수)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.1-15
    • /
    • 2010
  • In this study, the reduction factor of the code-defined site coefficient due to the embedment of a foundation was estimated for the seismic analysis of a building built on a soft soil site. This was done by utilizing the in-house finite element software P3DASS, which has the capability of pseudo 3D seismic analysis with nonlinear soil layers. A 30m thick soft soil site laid on the rock was assumed to be homogeneous, elastic, viscous and isotropic, and equivalent circular rigid foundations with radii of 10-70m were considered to be embedded at 0, 10, 20 and 30m in the soil layer. Seismic analyses were performed with 7 bedrock earthquake records deconvoluted from the outcrop records of which the effective ground acceleration was scaled to 0.1g. The study results showed that the site coefficients are gradually reduced except in the case of a small foundation embedded deeply in the weak soil layer, and it was estimated that the deviation of the site coefficients due to the foundation size was not significant. The standard reduction factor due to the foundation embedment were calculated adding the standard deviation to the average of 5 reduction factors calculated for 5 different foundation radii. Standard reduction factors for the site amplification factor were proposed for the practical amplification and the codes of KBC, etc., in accordance with the average shear wave velocity of the site, and the site class.

A Design Criterion for the Vibration of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Lee, D.C.;Brennan, M.J.;Mace, B.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.648-655
    • /
    • 2005
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the Engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode

  • PDF

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

A Design Criterion for the Vibration Isolation of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Brennan M.J.;Mace B.R.;Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.329-338
    • /
    • 2006
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode.

Reinforcing Effect of Cohesionless Slope by Reticulated Root Piles (비점착성 사면의 그물식 뿌리말뚝의 보강효과)

  • Yoo, Nam-Jea;Park, Byung-Soo;Choi, Jong-Sang
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.7-16
    • /
    • 1998
  • This paper is an experimental study of investigating the reinforcing effect and the behavior of cohesionless slope installed with reticulated root pils. Reduced scale model tests with plane strain conditions were performed to study the behavior of the strip footing located on the surface of cohesionless slopes reinforced with root piles. Model tests were carried out with Jumunjin Standard Sand of 45% relative density prepared by raining method to have an uniform slope foundation during tests. Slope of model foundation was 1 : 1.5 and a rigid model slop. Parametric model tests were performed with changing location of model footing, arrangements of root piles and angles of pile installation. On the other hands, the technique with camera shooting was used to monitor sliding surface formed with discontinuty of dyed sand prepared during formation o foudation. From test results, parameters affecting the behavior of model footing were analyzed qualitatively to evaluate their effects on the characteristic of load - settlement, ultimate bearing capacity of model footing and failure mechanism based on the formation of failure surface.

  • PDF

Dynamic analysis of foundations in a layered half-space using a consistent transmitting boundary

  • Lee, Jin Ho;Kim, Jae Kwan;Tassoulas, John L.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.203-230
    • /
    • 2012
  • This paper presents results for impedance (and compliance) functions and input motions of foundations in a layered half-space computed on the basis of a procedure that combines a consistent transmitting boundary with continued-fraction absorbing boundary conditions which are accurate and effective in modeling wave propagation in various unbounded domains. The effects of obliquely incident seismic waves in a layered half-space are taken into account in the formulation of the transmitting boundary. Using the numerical model, impedance (and compliance) functions and input motions of rigid circular foundations on the surface of or embedded in a homogeneous half-space are computed and compared with available published results for verification of the procedure. Extrapolation methods are proposed to improve the performance in the very-low-frequency range and for the static condition. It is concluded from the applications that accurate analysis of foundation dynamics and soil-structure interaction in a layered half-space can be carried out using the enhanced consistent transmitting boundary and the proposed extrapolations.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Da Li;Ikjae Lee;Cong Yi;Wei Gao;Chunhui Song;Shenglei Fu;Moohyun Kim;Alex Ran;Tuanjie Liu
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.287-312
    • /
    • 2023
  • The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.