• Title/Summary/Keyword: rigid connector

Search Result 34, Processing Time 0.018 seconds

A low damage and ductile rocking timber wall with passive energy dissipation devices

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.127-143
    • /
    • 2015
  • In conventional seismic design, structures are assumed to be fixed at the base. To reduce the impact of earthquake loading, while at the same time providing an economically feasible structure, minor damage is tolerated in the form of controlled plastic hinging at predefined locations in the structure. Uplift is traditionally not permitted because of concerns that it would lead to collapse. However, observations of damage to structures that have been through major earthquakes reveal that partial and temporary uplift of structures can be beneficial in many cases. Allowing a structure to move as a rigid body is in fact one way to limit activated seismic forces that could lead to severe inelastic deformations. To further reduce the induced seismic energy, slip-friction connectors could be installed to act both as hold-downs resisting overturning and as contributors to structural damping. This paper reviews recent research on the concept, with a focus on timber shear walls. A novel approach used to achieve the desired sliding threshold in the slip-friction connectors is described. The wall uplifts when this threshold is reached, thereby imparting ductility to the structure. To resist base shear an innovative shear key was developed. Recent research confirms that the proposed system of timber wall, shear key, and slip-friction connectors, are feasible as a ductile and low-damage structural solution. Additional numerical studies explore the interaction between vertical load and slip-friction connector strength, and how this influences both the energy dissipation and self-centring capabilities of the rocking structure.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Son, Guk-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

Experimental Study for Performance Evaluation of Structural Details of Girder-Abutment Joint in Integral Abutment Steel Bridge (일체식교대 강교량의 거더-교대 연결부 상세의 거동평가를 위한 실험적 연구)

  • Kim, Sang-Hyo;Yoon, Ji-Hyun;Choi, Woo-Jin;Kim, Jun-Hwan;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.61-72
    • /
    • 2011
  • In this study, the structural details of steel girder-abutment joints with shear connectors and tie bars were suggested to improve the rigid behavior and crack-resisting capacity of the joints in integral bridges. Experimental loading tests of steel girder-abutment joint specimens with the proposed and empirically constructed structural details were carried out, and the capacities and behavioral characteristics of the joints were evaluated through loading tests. Based on the results of the loading tests, it was estimated that all types of tested joints can be applied to the steel girder-abutment joints because they have sufficient stiffness and crack-resisting capacity under the required design and yield loads. According to the initial stiffness, crack propagations, and load-strain relationships, however, the joints with shear connectors and tie bars showed better structural behaviors compared to the empirically constructed joint.

An Esthetic Restoration of the Missing Maxillary Anterior Teeth with the Rotational Path RPD: A Case Report (회전삽입로 국소의치를 이용한 심미적 상악 전치부 수복 증례)

  • Lee, Ji-Hye;Lim, So-Min;Jung, Hye-Eun;Park, Chan-Jin;Cho, Lee-Ra;Kim, Dae-Gon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.209-222
    • /
    • 2011
  • Missing anterior teeth can be replaced using any of a number of methods. Patients may choose to replace missing teeth with a prosthesis that is either removable, fixed, or retained with implants. For patients faced with financial, anatomical, and/or esthetic limitations, the edentulous region can be restored successfully and esthetically with a properly designed and fabricated rotational path RPD. The rotational path RPD is a partial removable dental prosthesis that incorporates a curved, arcuate, or variable path of placement allowing one or more of the rigid components of the framework to gain access to and engage an undercut area. The rigid retainer must gain access to the infrabulge portion of the tooth by rotating into place. Either a minor connector or proximal plate provides retention through its intimate contact with a proximal tooth surface. A specially designed dovetails or asymmetric rest seats provides support and embracing effects. Correctly designed and fabricated rotational path RPD can provide improved esthetics, cleanliness, and retention. But rotational path RPDs are technique sensitive since the rotational path RPD has little margin of laboratory error that rigid retainers cannot be adjusted like conventional clasps can, RPD framework must be remade once the retention is lost. The sufficient understanding of the concept for the rotational path RPD is required for clinically successful treatment. This clinical report describes in detail the theoretical, laboratory considerations and the treatment of a patient with an anterior maxillary edentulous area treated by an AP path rotational RPD that had a difficulty in long term maintenance and describes another clinical case in which more reasonable treatment procedures were approached after analyzing the former case.