• Title/Summary/Keyword: rigid

Search Result 4,484, Processing Time 0.033 seconds

Lateral Earth Pressures on Buried Pipes due to Lateral Flow of Soft Grounds (연약지반의 측방유동으로 인하여 매설관에 작용하는 측방토압)

  • Hong, Byungsik;Kim, Jaehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.27-38
    • /
    • 2010
  • A series of model test as well as numerical analysis by FEM was performed to investigate lateral earth pressure acting on a buried pipe in soft ground undergoing horizontal soil movement. A model test apparatus was manufactured so as to simulate horizontal soil movement in model soft ground, in which a model rigid buried pipe was installed. The velocity of soil deformation could be controlled as wanted during testing. The model test was performed on buried pipes with various diameters and shapes to investigate major factors affected the lateral earth pressure. The result of model tests showed that the larger lateral earth pressure acted on the buried pipes under the faster velocity of soil movement. The result of numerical analysis, which was performed under immediate loading condition, showed a similar behavior with the result of model tests under 0.3mm/min to 1.0mm/min velocity of soil deformation. Most of model tests showed the soil deformation-lateral load behavior, in which the first yielding load developed at small soil deformation and elastic behavior was observed by the yielding load. Then, lateral load was kept constant by the second yielding load, in which plastic behavior was observed between the first yielding load and the second yielding one. Beyond the second yielding load, the compression behavior zone was observed. When the velocity was too fast, however, the lateral load was increased with soil deformation beyond the first yielding load without showing the second yielding load. The buried pipes with the larger diameter was subjected to the larger lateral load and the larger increasing rate of lateral load. At small soil deformation, the influence of diameter and shape of buried pipes on lateral load was small. However, when soil deformation was increased considerably, the influence became more and more.

Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle (모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.49-63
    • /
    • 2014
  • Bearing capacity factor $N_{\gamma}$ and shape factor were studied for rigid strip and circular footings with a rough base on sand by numerical modelling considering the effect of dilation angle. The numerical model was developed with an explicit finite difference code. Loading procedures and interpretation methods were devised in order to shorten the running time while eliminating the exaggeration of the reaction caused by the explicit scheme. Using the Mohr-Coulomb plasticity model with associated (${\psi}={\phi}$) and nonassociated (${\psi}$ < ${\phi}$) flow-rules, the bearing capacity factor $N_{\gamma}$ was evaluated for various combinations of internal friction angles and dilation angles. Bearing capacity factor decreased as the dilation angle was reduced from the associated condition. An equation applicable to typical sands was proposed to evaluate the relative bearing capacity for the nonassociated condition compared to the associated condition on which most bearing capacity factor equations are based. The shape factor for the circular footing varied substantially when the plane-strain effect was taken into account for the strip footing. The numerical results of this study showed closer trends with the previous experimental results when the internal friction angle was increased for the strip footing. Discussions are made on the reason that previous equations for the shape factor give different results and recommendations are made for the appropriate design shape factor.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

The Effect of Additives on the Mechanical Properties of Rigid Polyurethane (경질 폴리 우레탄의 기계적물성에 미치는 첨가제의 영향)

  • Na, Seok-En;Choi, Hwan-Oh;Lee, Jeon-Kyu;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.783-788
    • /
    • 2012
  • Stern tube bearing is a shaft device playing important roles to reduce the friction of axial rotation and to support the weight of shaft. However, because there is no domestic producer of stern tube bering, imported stern tube bearings have many practical problems including prices, delivery and after services. This is why stern tube bearing should be localization. For the purpose of development of polyurethane resin for stern tube bearings, the effect of additives on the hardness, tensile strength and elongation of the polyurethane resin were systematically investigated. For the preliminary researches, depending on the type of curing agent, MOCA type and non-MOCA type polyurethanes were synthesized. Preliminary researches concluded that MOCA type polyurethane resin has more excellent mechanical properties than non-MPCA type for stern tube bearings that Tensile strength and Hardness of non-MOCA type investigated 23 D, 4.3 Mpa. Therefore, MOCA type polyurethane was adapted as base resin of this research. Silica, calcium carbonate and graphite were selected as additives for the enhancement of mechanical properties of polyurethane resin. Effect of the type and the dosage of these additives on the hardness, tensile strength, elongation of the polyurethane resin were experimentally examined. However, addition of calcium carbonate and graphite showed only minor effect on the hardness of the resin. Polyurethane resin with silica showed relatively excellent hardness, tensile strength and improved elongation.

CLINICAL STUDY OF SENSORY ALTERATIONS AFTER SAGITTAL SPLIT RAMUS OSTEOTOMY (하악지 시상분할 절단술 후 감각 변화에 관한 연구)

  • Choi, Jun-Young;Yoo, Jun-Yeol;Yoon, Bo-Keun;Leem, Dae-Ho;Shin, Hyo-Keun;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2010
  • The bilateral sagittal split ramus osteotomy (BSSRO) is preferred method of surgical correction for mandibular prognathism, retrognathism and asymmetry. This technique performed from primarily an intraoral incision to avoid a scar. After forward movement of the distal segment of the mandible, healing of bone by primary or secondary intention is easily accomplished through large areas of cancellous bony overlap. When rigid fixation is used for the BSSRO, it is possible to open the mouth during the immediate post-operative period because it promotes the healing process. Although this surgical procedure has been well-documented, the incidence of postoperative trigeminal neurosensory disorder in the region of the inferior alveolar nerve and the mental nerve remains one of the major complication. However, evaluation of objective methods for sensory recovery patterns is insufficient although most patients find their sensory return. Neurometer electrodiagnostic device performs automated neuroselective sensory nerve conduction threshold evaluation by determining current perception threshold (CPT) measures. The purpose of this study was to evaluate the sensory recovery patterns of inferior alveolar and mental nerve over time. Nerve examination with a neurometer was performed in 30 patients undergoing the BSSRO at pre-operative, post-operative 1-, 2-, 4- week, and 2-, 3-, 4-, 5-, 6- month follow-up visits after the osteotomy to compare the differences of nerve injury and recovery patterns after the BSSRO with or without genioplasty and sensory recovery patterns associated with the kind of nerve fiber.

Analysis Models of Concrete Slabs-on-Grade Considering Horizontal Resistance at Slab Bottom and Behavior under Thermal Loads (슬래브 하부 수평저항을 고려한 지반위의 콘크리트 슬래브 해석 모델 및 온도하중에 의한 거동 분석)

  • Kim Seong-Min;An Zu-Og
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.271-282
    • /
    • 2006
  • The behavior of the concrete slabs on grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the thermal load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom employing the thin plate on an elastic foundation that is widely used for the analysis of concrete slabs-on-grade and rigid pavement systems. Finite element formulations have then been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vortical stiffness of the foundation when subjected to the temperature gradient between the top and bottom of the slab and the uniform temperature drop throughout the slab depth. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab when the thermal loads are applied.

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

Robust Reference Point and Feature Extraction Method for Fingerprint Verification using Gradient Probabilistic Model (지문 인식을 위한 Gradient의 확률 모델을 이용하는 강인한 기준점 검출 및 특징 추출 방법)

  • 박준범;고한석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.95-105
    • /
    • 2003
  • A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.

Eye Tracking Using Neural Network and Mean-shift (신경망과 Mean-shift를 이용한 눈 추적)

  • Kang, Sin-Kuk;Kim, Kyung-Tai;Shin, Yun-Hee;Kim, Na-Yeon;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In this paper, an eye tracking method is presented using a neural network (NN) and mean-shift algorithm that can accurately detect and track user's eyes under the cluttered background. In the proposed method, to deal with the rigid head motion, the facial region is first obtained using skin-color model and con-nected-component analysis. Thereafter the eye regions are localized using neural network (NN)-based tex-ture classifier that discriminates the facial region into eye class and non-eye class, which enables our method to accurately detect users' eyes even if they put on glasses. Once the eye region is localized, they are continuously and correctly tracking by mean-shift algorithm. To assess the validity of the proposed method, it is applied to the interface system using eye movement and is tested with a group of 25 users through playing a 'aligns games.' The results show that the system process more than 30 frames/sec on PC for the $320{\times}240$ size input image and supply a user-friendly and convenient access to a computer in real-time operation.