• Title/Summary/Keyword: rifampicin

Search Result 195, Processing Time 0.023 seconds

Electrochemical Behavior and Differential Pulse Polarographic Determination of Rifampicin in the Pharmaceutical Preparations

  • Hahn, Young-Hee;Shin, Sun-Mi
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.100-104
    • /
    • 2001
  • Differential pulse polarographic(DPP) analytical procedure for the rifampicin antibiotic, which can be applied to monitor its synthetic process from the starting antibiotic of rifamycin B or rifamycin SV has been developed based on the electrochemical reduction of an azomethine group. Rifampicin exhibited a cathodic peak due to the azomethine group in the side chain of 3-[(4-methyl-1-piperazinyl)imino]methyl moiety and another cathodic peak due to the carbonyl group in rifamycin SV by DPP. The experimental peak potential shift of an azomethine reduction was -73 mV/pH in the pH range between 3.0 and 7.5, agreeing with involvement of 4 e-and 5 $H^5$ in its reduction. By the cyclic voltammetric(CV) studies, the azomethine and the carbonyl reductions in rifampicin were processed irreversibly on the mercury electrode. The plot of peak currents vs. concentrations of rifampicin ranging $1.0{\times}10^{-7} M~$1.0{\times}10^{-5} M yielded a straight line with a correlation coefficient of 0.9996. The detection limit was $1.0{\times}10^{-8} M with a modulation amplitude of 50 mV DPP has been successfully applied for the determination of rifampicin in the pharmaceutical preparations.

  • PDF

Drug Interaction of Rifampicin and Isotiazid (리팜피신과 이소니아짓의 약물상호작용)

  • 범진필;최준식
    • YAKHAK HOEJI
    • /
    • v.30 no.5
    • /
    • pp.208-213
    • /
    • 1986
  • Rifampicin suspension was administered orally at a does of 34mg/kg to six rabbits after 5, 10 and 20mg/kg pretreatment of isoniazid twice daily for 9 days. The blood level of rifampicin was decreased significantly by isoniazid 10mg/kg 20mg/kg pretraetment. The renal clearance(CLr) of rifampicin was increased by isoniazid 20mg/kg and the biliary clearance(CLb) was incresed by isoniazid 10mg/kg and 20mg/kg pretreatmetn. Elimination rate constant(K) and time to reach maximum concentration(tmax) were increased by isoniazicl pretreatment. But half-life and maximum concentration(C max) were decreased. Relative bioavailability was decreased significantly by isoniazid 10mg/kg and 20mg/kg pretreatment.

  • PDF

Comparison of PCR-Line Probe and PCR-SSCP Methods for the Detection of Rifampicin Resistant Mycobacterium Tuberculosis (Rifampicin 내성 결핵균의 검출에 있어서 PCR-line Probe법과 PCR-SSCP법의 비교)

  • Kim, Ho-Joong;Suh, Gee-Young;Chung, Man-Pyo;Kim, Jong-Won;Shim, Tae-Sun;Choi, Dong-Chull;Kwon, O-Jung;Rhee, Chong-H;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.714-722
    • /
    • 1998
  • Background: Rifampicin (RFP) is a key component of the antituberculous short-course chemotherapy and the RFP resistance is a marker of multi-drug resistant (MDR) tuberculosis. RPoB gene encodes the $\beta$-subunit of RNA polymerase of M. tuberculosis which is the target of RFP. And the mutations of rpoB gene have been found in about 96% of rifampicin resistant clinical isolates of M. tuberculosis. So in order to find a rapid and clinically useful diagnostic method in identifying the RFP resistance, we compared the PCR -line probe method with PCR-SSCP for the detection of the rpoB gene mutation in cultured M. tuberculosis. Methods: 45 clinical isolates were collected from patients who visited Sung Kyun Kwan University Hospital. The RFP susceptibility test was referred to the referral laboratory of the Korean Tuberculosis Institute. 33 were rifampicin resistant and 12 were rifampicin susceptible. The susceptibility results were compared with the results of the PCR-BSCP and PCR-line probe method. Results: We could find rpoB mutations in 27/33(81.8%) RFP-resistant strains by PCR-line probe method, and in 23/33 (69.7%) by PCR-SSCP and there was no significant difference between two methods. There was no mutation in rifampicinn susceptible strains by both methods. Conclusion: PCR-line probe method would be a rapid, sensitive and specific method for the detection of rifampicin resistant Mycobacterium tuberculosis.

  • PDF

Pyrosequencing Based Detection of Rifampicin or Isoniazid Resistant in Mycobacterium tuberculosis (Pyrosequencing 분석법을 이용한 Rifampicin과 Isoniazid 결핵약제내성의 빠른 검사법)

  • Oh, Seo-Young;Kim, Hyo-Bin;Shin, Min-Sik;Kim, Jin-Wook;Park, Sung-Hwuy
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.1
    • /
    • pp.24-30
    • /
    • 2009
  • Rifampicin (RIF) and isoniazid (INH) are the most important drug for the treatment of Mycobacterium tuberculosis. Mutations correlated to rifampicin and isoniazid-resistance have been detected in rpoB gene and katG gene, respectively. Of the rifampicin-resistant isolates, 90% showed mutations in rpoB gene at codon 507 to 533. Isoniazid-resistant isolates analysed had a mutation in katG at codon 315. The aim of this study is to develop a pyrosequencing-based approach for rapid detection of ripampin or isoniazid resistant M. tuberculosis based on characterization of all possible mutation in the target region. For this study, the DNA selected from 35 cases of MTB PCR positive clinical sample such as bronchial washing, sputum, and pleural fluid. RIF or INH resistant was analyzed by pyrosequencing data of rpoB and katG gene. 28 (80%) and 7 (20%) of 35 MTB PCR positive DNAs were occured rifampicin-sensitivity and resistant, respectively. For INH, 30 (85.7%) and 5 (14.5%) cases were detected isoniazid-sensitivity and resistant, respectively. When pyrosequencing analysis was compared with ABI sequencing analysis, both analysis were presented same result, but pyrosequencing analysis was more rapid than ABI sequencing analysis. In conclusion, we found that pyrosequencing technology offers high accuracy, specificity, short turn around time and a high throughput in detection of rifampicin or isoniazid resistance in M. tuberculosis.

  • PDF

Development of Enterococcus faecalis Strains Resistant to Rifampicin and Ofloxacin (리팜피신과 오플로삭신에 내성인 Enterococcus faecalis 균주의 개발)

  • Lee, Soo-Hwa;Kim, Sook-Kyung;Chung, Young-Ja;Shim, Mi-Ja;Kim, Byong-Kak;Choi, Eung-Chil
    • YAKHAK HOEJI
    • /
    • v.40 no.3
    • /
    • pp.351-356
    • /
    • 1996
  • The preparation of Enterococcus faecalis RSI is used as a therapeutics for human intestinal disorders. However, the microbe in this preparation is usually very sensitive to rifampicin and fluoroquinolones. If this preparation is taken with rifampicin or fluoroquinolones, its therapeutic effect can not be expected. E. faecalis RFR11, containing resistance to rifampicin was obtained by MNNG mutation method. Serial passage of E. faecalis RFR11 produced E. feacalis OFR16 on agar with 2-fold minimal inhibitory concentration of ofloxacin produced. E. feacalis OFR16 was resistant to fluoroquinolones up to 8-256 fold higher than that for the original strain. E. faecalis OFR16 also exhibited identical characteristics with the parent strain when they were tested for lactic acid formation and growth inhibition of E. coli MB4-5737 and Shigella sonnei MB4-10411. From in vitro test, it was identified that rifampicin and ofloxacin is not inactivated by certain factors of E. faecalis OFR16. Conclusively. E. faecalis OFR16, rifampicin and fluoroquinolones resistant mutant, is an efficient strain that has insensitivity against rifampicin and fluoroquinolones and original biochemical characteristics of the parent strain.

  • PDF

Development of Bifidobacterium bifidum Strains Resistant to Rifampicin and Ofloxacin (Rifampicin과 Ofloxacin에 내성인 Bifidobacterium bifidum 균주의 개발)

  • Chung, Young-Ja;Jeon, Myoung-In;Kang, Chang-Youl;Kim, Byoung-Kak;Choi, Eung-Chil
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.763-769
    • /
    • 1994
  • Bifidobacterium bifidum, one strain of medical preparation being on the market for human intestinal disorders, was sensitive to rifampicin and fluoroquinolones. If this preparation is taken with rifampicin and fluoroquinolones, its therapeutic effect can't be expected. Serial passage of B. bifidum RFR61, which was obtained by MNNG mutation method, on agar with 2-fold minimal inhibitory concentration of ofloxacin produced B. bifidum OFR9 with minimal inhibitory contentrations of fluoroquinolones up to $4{\sim}256-fold$ higher than that for the original strain. B. bifidum OFR9 produced almost the same amount of organic acid as parental strain. This strain showed growth inhibitory activity against E. coli NM522, Shigella dysenteriae ATCC9752 and E. coli 078. No inactivations of rifampicin and ofloxacin by this resistant mutant strain were found.

  • PDF

A Biopharmaceutical Study on Rifampicin-Polyvinylpyrrolidone Coprecipitate (Rifampicin-Polyvinylpyrrolidone 공침물에 관한 생물약제학적 연구)

  • 김영일
    • YAKHAK HOEJI
    • /
    • v.23 no.2
    • /
    • pp.81-94
    • /
    • 1979
  • Rifampicin-polyvinylpyrrolidone coprecipitates were prepared by the solvent method to increase the solubility and dissolution rate, thereby improving absorption of rifampicin. It was found that the solubility and dissolution rate were greater with the 1 : 5 (w/w) coprecipitate than with the pure drug, physical mixtures or coprecipitates of any other ratio of the two components. The blood concentration data in non-fasted rats showed that the extent of absorption of rifampicin were significantly enhanced following the oral administration of the 1 : 5 coprecipitate; The area under the serum concentration curve (0-8hr) was 1.3 times greater with the 1 : 5 coprecipitate than with the pure drug. The blood concentration reached its peak (4. 38$\pm$1.36mcg/ml) within two hours in the case of oral administration of the 1 : 5 coprecipitate and, on the other hand, it reached the maximum (3.77$\pm$0.90mcg/ml) after four hours of oral administration of the pure drug. It was observed that there was no significant difference between the 1 : 5 coprecipitate and the pure drug in the extent and rate of absorption of rifampicin when fasted rats were used. When the 1 : 5 coprecipitate was orally administered to human subjects 20 minutes after meal, it was found that the blood concentration reached the maximum after one hour; in the case of the pure drug, it reached its peak after four hours.

  • PDF

Antibacterial Effect of the Surface-Modified Biomedical Polyurethane against Staphylococcus aureus and Staphylococcus epidermidis

  • Jeon, Sung-Min;Kim, Hyun-Jung;Lee, Kyu-Back;Kim, Jong-Won;Kim, Mal-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.259-265
    • /
    • 2001
  • Staphylococal infection still remains to be one of the most serious infections, having various complications in the clinical use of indwelling polymeric medical devices. However, there are a few promising systems showing a high antibacterial effect without causing any demage of polymer backbone under biological environments such as blood or body fluid. In order to resolve this problem, we have designed a new antibiotic releasing system via a hydrolysis mechanism. The surface of biomedical polyurethane (PU) was modified by using 1,6-diisocyanatohexane (HMDI) to immobilize the rifampicon. Also, the immobilized rifampicin was designed to be released by a selective cleavage of the unstable carbamate linkage that exists on the rifampicin-immobilized polyurethane (PHR). The immobilization of rifampicin on the surface of polyurethane was confirmed by the disappearance of the characteristics IR absorbance peak of the isocyanate (-NCO) group at $2,267\;cm^{-1}$. The PHR showed a continuous rifampicin release profile under an aqueous environment of 10 mM of PBS (phosphate-buffered saline) for ove 6 days. The rifampicin molecules, which are released from PHR under an optimal bacterial infection environment, had a higher antibacterial activity against both S. aureus and S. epidermidis than rifampicin-incorporated polyurethane (RIP). In addition, the PHR maintained a stable antibacterial effect under a blood-mimic aqueous environment such as bovine calf serum.

  • PDF

The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture

  • Shuyi Wang;Jingwen Hao;Jicheng Yang;Qianqian Zhang;Aihua Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.167-179
    • /
    • 2023
  • The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.

Four months of rifampicin monotherapy for latent tuberculosis infection in children

  • Oh, Chi Eun;Menzies, Dick
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.5
    • /
    • pp.214-221
    • /
    • 2022
  • Diagnosing and treating latent tuberculosis infection (LTBI) is an important part of efforts to combat tuberculosis (TB). The Korean guidelines for TB published in 2020 recommend 2 LTBI regimens for children and adolescents: 9 months of daily isoniazid (9H) and 3 months of daily isoniazid plus rifampicin. Isoniazid for 6-12 months has been used to effectively treat LTBI in children for over 50 years. However, a long treatment period results in poor patient compliance. This review summarizes pediatric data on the treatment completion rate, safety, and efficacy of 4 months of daily rifampicin (4R) and evaluates the pharmacokinetics and pharmacodynamics of rifampicin in children. The 4R regimen has a higher treatment completion rate than the 9H regimen and equivalent safety in children. The efficacy of preventing TB is also consistent with that of 9H when summarizing reports published to date. A shorter treatment period could increase patient compliance and, therefore, prevent TB in more patients. By using an effective, safe, and highly compliant regimen for the treatment of children with LTBI, we would become one step closer to our goal of eradicating TB.