• Title/Summary/Keyword: ride safety

Search Result 159, Processing Time 0.027 seconds

Effect of Damper Between Maglev Vehicles on Curve Negotiation (자기부상열차 차간 댐퍼의 곡선주행에의 효과 분석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In a magnetic train set composed of more than two cars, the installation of dampers between cars is carefully considered for improving both the ride quality and the safety, particularly during curve negotiation. In this study, a dynamic simulation of the ride quality and curve negotiation of a Maglev vehicle was carried out. The dynamic model is developed based on multibody dynamics. The presented full vehicle multibody dynamic model integrates the electromagnet model and its control algorithm. By using this model, the effects of the dampers are numerically analyzed. The proposed damper is installed on the vehicle and tested to analyze its effects. In this study, the simulation and measured results of the vehicle behavior and ride quality are discussed.

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.

Mapping thermal deformations of long-span arch bridge to CRTS Type I double-block ballastless tracks in high-speed railways

  • Hongye Gou;Hairong Ren;Fei Hu;Qianhui Pu;Xuguang Wen;Yi Bao
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.435-450
    • /
    • 2024
  • The geometry change of railway tracks significantly influences the safety and ride comfort of high-speed trains. This paper presents an analytical method to map the thermal deformations of a long-span arch bridge to the geometry of CRTS Type I double-block ballastless tracks for high-speed railways. A mechanical model of the bridge-track coupled system was developed to derive analytical formulae of the deformations of the track. The analytical formulae explicitly consider the mechanical properties of the bridge-track coupled system and the temperature profile. A three-dimensional finite element model was established to evaluate the predictions obtained from the analytical formulae. The results show that the analytical formulae provide accurate predictions of the track deformations caused by the thermal deformations of bridges. This research will promote the design, evaluation, and operation of high-speed railway bridges for improved safety and ride comfort in engineering practices.

Influence of Semi-Active Suspension on Running Safety of Vehicles

  • Liu, Hong-You;Yu, Da-Lian
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.147-151
    • /
    • 2009
  • Railway vehicles equipped with semi-active suspension system can improve the ride quality of car bodies. Semi-active suspension system is usually applied onto high speed train, and therefore higher running safety requirement is proposed. The influence of semi-active suspension system on safety of vehicles running on straight line and curve line is studied, and the influences of sky hook damping coefficient and system time-delay on operation safety of cars fitted with semiactive suspension system is analyzed. The results show that the vehicles equipped with semi-active suspension system, not only the vibration of car body is decreased, it can also give little influence on running safety of cars, as a result, it will not endanger the running safety of cars.

  • PDF

A Study on the Design of Virtual Engine Sound of Eco-Friendly Vehicle

  • Jee, Sanghwi;Park, Hyungwoo;Bae, Myung-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • In the development of means of transportation, human beings who walk, ride or ride carriages are now enjoying the benefits of many means of transportation, including bicycles, airplanes, trains, buses, and cars. In the case of automobiles among various means of transportation, there is an advantage that an individual can conveniently move while possessing it. To solve air polution problems at the same time, eco-friendly automobiles such as low-noise, low-pollution, and high-efficiency automobiles have emerged. However, in the case of eco-friendly vehicleJ, engine noise at low speeds is a noise that is unlike existing vehicles and poses a threat to the safety of pedestrians. In this study, virtual engine system has been developed to prevent engine accidents caused by low- The pedestrians are aware of the fact that the vehicle is approaching.

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Vehicle Dynamic Analysis Using Virtual Proving Ground Approach

  • Min, Han-Ki;Park, Gi-Seob;Jung, Jong-An;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.958-965
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness (NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer In this study, we used the virtual proving ground (VPG) approach for obtaining the dynamic characteristics. The VPG approach uses a nonlinear dynamic finite element code (LS-DYNA3D) which expands the application boundary outside the classic linear static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental results, and the feasibility of the integrated CAE analysis methodology was verified.

The Design of Neuro Controlled Active Suspension (신경회로망을 이용한 능동형 현가장치 제어기 설계)

  • 오정철;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.414-419
    • /
    • 1994
  • In recent years, there has been an increasing intest in control of active automotive suspension systems with a goal of improving the ride comfort and safety. Many approaches for these purposes have used linearized models of the suspension's dynamics, allowing the use of linear control theory. However, the linearized model does not well descriibe the actual system behavior which is inherently nonlinear. The object of this study is to develop a neuro controlled active suspension for the ride quality improvement. After obtaining active control law using optimal control theory, we use the artificial neural network to train the neuro controller to learn the relation of road input and control force. Form the numerical results, we found that back propagation learning does show good pattern matching and vertical acceleration of the driver's seat and sprung mass.

  • PDF

Structural Health Monitoring for Trains: A review of damage detection methods (철도차량 구조건전성모니터링: 손상 감지 기술 분석)

  • Chong, See-Yenn;Lee, Jung-Ryul;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1545-1561
    • /
    • 2008
  • Among all transportations, railway transports have been promisingly offering excellent energy conservation and travelling time. Inevitably, they become a main role in not only transport goods but also passengers. With leap in development of technology, trains have tremendously enhanced their services in terms of speed, accessibility and comfort. However, the safety and ride quality have become a main issue as the train speed increased. The higher speeds have led the structural dynamics and health must be monitored from time to time to ensure that they are in good condition to provide reliable ride. Among all monitoring systems, the structural health monitoring (SHM) systems are imperative important due to its capability of in-situ monitoring and inherently reduce the maintenance frequencies and the huge associated cost. In this paper, SHM systems and the related non-destructive test and evaluation methods were discussed. The types of damages related to train vehicles as well as the damage hot spots are also included in this paper.

  • PDF

Development of an App-Based Bicycle Riding System (앱 기반 자전거 라이딩 시스템 개발)

  • Dong-Jin Shin;Seung-Yeon Hwang;Jae-Kon Oh;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.113-118
    • /
    • 2023
  • Recently, as more and more cyclists ride bicycles for their health and more people commute by bicycle, the number of cyclists has increased. However, as the number of users increases, many accidents occur, and the handling of bicycle accidents is unstable. It is inadequate to prepare for accidents in other ways except for safety equipment. Therefore, there is a need for a safe and convenient way for modern adults to ride. Unlike other apps, in this study, by adding a safety function, you can shoot a black box while riding, and a function to inform you that it is an accident-prone area is implemented. In addition, a function that can detect an accident using the Android built-in sensor and automatically make emergency contact is added. Cyclists can secure safety and convenience in one app without the need to use additional apps. Furthermore it develops an app system that allows you to talk about riding and share your route through the Riding Community bulletin board.