• Title/Summary/Keyword: ride

Search Result 947, Processing Time 0.028 seconds

Effect of Damper Between Maglev Vehicles on Curve Negotiation (자기부상열차 차간 댐퍼의 곡선주행에의 효과 분석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In a magnetic train set composed of more than two cars, the installation of dampers between cars is carefully considered for improving both the ride quality and the safety, particularly during curve negotiation. In this study, a dynamic simulation of the ride quality and curve negotiation of a Maglev vehicle was carried out. The dynamic model is developed based on multibody dynamics. The presented full vehicle multibody dynamic model integrates the electromagnet model and its control algorithm. By using this model, the effects of the dampers are numerically analyzed. The proposed damper is installed on the vehicle and tested to analyze its effects. In this study, the simulation and measured results of the vehicle behavior and ride quality are discussed.

A Flexible Operation Plan of Free Ride System Based on Transport Card Data in Seoul Metropolitan Area (수도권 교통카드자료를 활용한 무임승차제도의 탄력적 운영방안)

  • Lee, Chang Hun;Kim, Sigon;Yun, Gyeong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1069-1073
    • /
    • 2016
  • The current free-riding subway system for the elderly over 65 years old has been implemented since in 1980. As the aging population increases, the number of free riders also increases. It results eventually in the increase of subsidy from government. In addition, a transfer between subway and bus is not good enough since the free ride system is applied to only subway not to bus. The aim of this study is to analyze the transport card data to understand the impact of free-riding in the viewpoint of economic issues. It aims also to analyze the transfer patterns between public transport. At the end it compares Korea case with international cases and finds out some issues on free-ride systems. Finally, counter-measures aimed at improving the current free-rider system is suggested.

Analysis of Risk Factors of Musculoskeletal Disorder for Child-care Teachers' Job

  • Kim, Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.409-418
    • /
    • 2011
  • Objective: This study was performed to evaluate the child-care teachers' job in relation to physical work. Background: Child-care teacher is directly related to the quality of child care. And their physical activity is higher than general education teachers because the proportion of day care is high. But analyzes of child-care teachers' job burdens and the work environment associated with physical activity is not well established. Method: To conduct this study, the child-care teachers' job was classified into 18 physical works. After classification, posture was evaluated by ergonomic posture evaluation schemes of OWAS, RULA, REBA and evaluated for each physical part. Next, musculoskeletal subjective symptoms were analyzed. Results: The results showed the following: The highest assessment on the posture evaluation was "helping children to ride a school bus", "feeding: meal/snack", "brushing children's teeth" and "arrangement of nap-stuff". The rank of high-risk assessment on the neck/trunk/leg part was arranged by: "feeding: meal/snack", "helping children to ride a school bus", "making nap", "arrangement nap-stuff" and "brushing children's teeth". The rank of high-risk assessment on the upper limbs part was arranged by: "helping children to ride a school bus", "the bust - group activity", "meal/snack time - preparing, feeding, arrangement", "nap time - preparing, arrangement", "brushing children's teeth", and "using the toilet". According to the results of each musculoskeletal subjective symptom, teachers ordered the pain area as follows: waist, shoulder, leg/feet, and neck, and they showed more pain on trunk than the upper limbs. Conclusion: To sum up the results from ergonomic posture evaluation and a subjective symptom, the following are high working pressures: "feeding: meal/snack", "the bust - group activity", "making nap", "brushing children's teeth" with deep bending and waist twisting, "helping children to ride a school bus", "brushing children's teeth" with lifting shoulder; "meal/snack time - preparing, arrangement", "nap time - preparing, arrangement", and "using the toilet" with moving or an up-down position in their job. Application: The results of this study might be information for improvement of the child-care teachers' job environment.

Analysis of the Influence of Track Alignment on Ride Comfort and Safety of KTX (방향틀림이 KTX 주행거동에 미치는 영향 분석)

  • Choi, Il-Yoon;Um, Ju-Hwan;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • Track irregularities is one of the key factors influencing the running behavior of trains. In order to ensure safety and ride comfort of train, the criteria for track irregularities should be adequately established regarding vehicle velocity, vehicle characteristics, characteristics of the track recording car, and measurement interval. Also, track maintenance should be carried out thoroughly according to the criteria for managing track irregularities. Numerical analysis was conducted to investigate the influence of track alignment on the running behavior of Korean high speed train(KTX). Various wavelengths and amplitudes of lateral alignment were considered as parameters for this study using the Vampire program, a vehicle dynamics modeling package in railway environment. Derailment, lateral load, bogie acceleration and body acceleration of numerical analysis results due to alignment were investigated. Finally, the influence of the alignment on safety and ride comfort for the KTX was evaluated. This study indicates that alignment irregularities have significant impacts on running safety, and that the criteria used to manage alignment irregularities should be restrictive to ensure the running safety of the KTX.

Evaluation of Running Safety and Ride Comfort for High Speed Train in Cases of Superimposition of Vertical and Horizontal Curves (종곡선과 평면곡선의 경합조건별 차량주행안전성 및 승차감 평가)

  • Um, Ju-Hwan;Choi, IL-Yoon;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 2013
  • In railway construction, superimposition of horizontal and vertical curves has critical effects on the running stability and the ride comfort of vehicles as well as on construction costs. In this study, running safety, ride comfort, and track acting forces were analyzed by a numerical analysis using the VAMPIRE program according to cases of superimposition of vertical and horizontal curves. From the analysis results, it was found that running safety, riding comfort, and track acting forces in the case of superimposition of vertical and horizontal curves as well as vertical and transition curves meet all of the criteria. Also, in the case of the superimposition of vertical curves and curvature change between horizontal transition curves and circular curves meet all of the criteria.

Design and Control of a MR Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Vibration Test of Truck with Air Suspension & Development of Korean Type Air Suspension (공기 현가장치를 장착한 화물차량의 진동측정 및 한국형 공기 현가장치 모듈 개발)

  • Woo, Jun-Seong;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Tae-Won;Kwon, Soon-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1215-1223
    • /
    • 2006
  • A leaf spring suspension has been widely used since it can carry big load and its simplicity. But one major drawback is the poor ride performance because of the friction in the system and the high stiffness coefficient. To overcome these, an air spring suspension can be used. The air spring suspension system can improve the ride of the heavy vehicle significantly and also it can adjust the height to the loading and unloading. The road tests for the truck with the leaf spring suspension and air spring suspension are performed to compare the ride quality of the two systems. To develop the air spring suspension system tailored to the target truck, chassis development procedure using CAE has been applied.

Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston (피스톤 바이패스 유로가 있는 MR 댐퍼 장착 1/4 차량 현가시스템의 성능평가)

  • Kim, Wan Ho;Hwang, Yong Hoon;Park, Jhin Ha;Shin, Cheol-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2017
  • This work presents a comparative work on the ride comfort of a quarter car suspension system between two different magneto-rheological (MR) dampers; one is conventional type without bypass hole and the other is featured by several bypass holes in the piston. As a first step, two different MR dampers are designed on the basis of the governing equation and manufactured with same geometric dimensions except the bypass holes. After investigating the field-dependent damping properties, two dampers are installed to the quarter car suspension system. The suspension model is then derived and a sky-hook controller is implemented to identify vibration control performance under random road. It is shown that the suspension system with MR damper featured by the bypass holes can provide much better ride quality than the case without the bypass holes. This is validated via experimental implementation.

Nonliear vibration analysis of polyurethane foam (폴리우레탄 폼의 비선형 진동특성 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3435-3441
    • /
    • 2014
  • A dynamic modeling and prediction of polyurethane foam material, which is used as the seat in vehicles is very important for improving the ride quality of vehicle occupants. In this study, parameters to define the nonlinear stiffness and time-variant characteristics of the viscoelasticity of polyurethane foam were obtained using a static compression test. Polynomial functions and convolution integral were used to model the nonlinear and viscoelastic characteristics of polyurethane foam mathematically. The dynamic behaviors excited by the seat floor displacement were analyzed using a numerical integration method for the nonlinear vibration model. As a result, the viscoelastic characteristics of polyurethane foam was found to be an important parameter for improving the ride quality.

Voltage Dip Compensation Algorithm Using Multi-Level Inverter (멀티레벨 인버터의 순간정전 보상알고리즘에 관한 연구)

  • Yun, Hong-Min;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.133-140
    • /
    • 2013
  • Cascaded H-Bridge multi-level inverters can be implemented through the series connection of single-phase modular power bridges. In recent years, multi-level inverters are becoming increasingly popular for high power applications due to its improved harmonic profile and increased power ratings. This paper presents a control method for balancing the dc-link voltage and ride-through enhancement, a modified pulse width-modulation Compensation algorithm of cascaded H-bridge multi-level inverters. During an under-voltage protection mechanism, causing the system to shut down within a few milliseconds after a power interruption in the main input sources. When a power interruption occurs finish, if the system is a large inertia restarting the load a long time is required. This paper suggests modifications in the control algorithm in order to improve the sag ride-through performance of ac inverter. The new proposed strategy recommends maintaining the DC-link voltage constant at the nominal value during a sag period, experimental results are presented.