• Title/Summary/Keyword: ricehusk

Search Result 7, Processing Time 0.021 seconds

Properties of Board Manufactured from Sawdust, Ricehusk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 성질)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.61-75
    • /
    • 2020
  • In this study, the environmentally friendly material charcoal was added to ricehusk, an agricultural by-product, and sawdust, which emerges during the sawing process, to produce board by mixing ratio and concentration levels of ricehusk and charcoal; it then investigated its physical properties for development purposes and achieved the following results. The water absorption and thickness swelling of the compounded board produced per adding ratio of ricehusk and charcoal showed a gradually decreasing tendency along with the increase in adding ratio of the charcoal, and as the density of the compounded board increased, the water absorption decreased, while the thickness swelling increased. The internal bond strength of the compounded board had indicated its highest value of 0.49N/㎟ at the density of 0.7g/㎤. This satisfied the quality standard for KSF 3104 Particleboard. The internal bond strength of the compounded board manufactured per adding ratio of ricehusk and charcoal showed a steady decrease with the decrease in the adding ratio of ricehusk, and an increase in the addingratio of the charcoal. Also, in cases when the ratio of the ricehusk and charcoal by KSF 3104 quality standard were 35:5 and 30:10, it satisfied the quality standard of 15.0-type, whereas it satisfied the 13.0-type quality standard if the ratios were 25:15 and 20:20. It showed a tendency of increasing hardness of the compounded board with the increase in density, and decreasing hardness with the increase in the adding ratio of the charcoal.

Synthesis of Methyl Alcohol and Alternative Gases for Petroleum by Thermochemical Gasification of Waste Lignocellulosic Materials (II) - Thermochemical Conversion of Sawdust, Ricestraw and Ricehusk Using Alkali Salts as Catalyst by Pressurized Reactor (목질(木質) 폐재(廢材)의 열(熱)-화학적(化學的) 방법에 의한 메틸알콜과 대체(代替)에너지 가스의 합성(合成) (II) - 가압하(加壓下)에 알칼리염을 촉매로 사용한 톱밥, 볏짚 그리고 왕겨의 열화학적(熱化學的) 분해(分解) -)

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.43-46
    • /
    • 1986
  • A stainless steel autoclave reactor, which is the property of Pacific Northwest Laboratories(PNL) and located in PNL, was acted for pyrolysis and gasification of sawdust, ricestraw, and ricehusk. The initial reaction temperature of this reactor was 300$^{\circ}C$, and up to 500$^{\circ}C$ to complete pyrolysis and gasification reaction. The maximum exerted pressure on this reactor was 800 psig. In order to examine the effect of catalyst on reaction temperature, $K_2CO_3$, and nickel/alkali carbonate catalyst mixture were also used. The experimental results obtained with this reactor indicated that good yields of methane-rich gas(exceeding 40% methane) can be produced. The product gas mixtures were also identified to be CO. $CO_2$, $C_2H_4$, and $CH_3CHO$ etc. by Gas Chromatography and Mass Spectrometer.

  • PDF

Synthesis of Methyl Alcohol and Alternative Gases for Petroleum by Thermochemical Gasification of Waste Lignocellulosic Materials (I) - Thermochemical Conversion of Sawdust, Ricestraw and Ricehusk Using Alkali Salts as Catalyst - (목질(木質) 폐재(廢材)의 열(熱)-화학적(化學的) 방법에 의한 메틸알콜과 대체(代替)에너지 가스의 합성(合成)(I) - 알카리염(鹽)을 촉매로 사용한 톱밥, 볏집 그리고 왕겨의 열화학적(熱化學的) 분해(分解) -)

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.21-28
    • /
    • 1986
  • A quartz type gasification reactor was designed and used for pyrolysis and gasification of sawdust, ricestraw and ricehusk. The initial reaction temperature was 350$^{\circ}C$, and up to 550$^{\circ}C$ to complete pyrolysis and gasification reaction. In order to examine the effect of catalyst on reaction temperature, $K_2CO_3$ and $Na_2CO_3$ as catalyst were also used. The product gas mixtures are identified to be CO, $CO_2$, $CH_4$ and $CH_3CHO$ etc. by Gas Chromatography and Mass Spectrometer. The highest gas volume of the gasified sawdust at 550$^{\circ}C$ amounts to 1800ml/g of sawdust, even though the yield and composition of this product gas are depending on the reaction temperature of the reactor and catalyst used.

  • PDF

Step-wise Growth of Dendrimer over Mesoporous SBA-15 Synthesized Using Ricehusk Ash as Silica Source (쌀겨회재에서 추출된 실리카를 이용한 메조포러스실리카 SBA-15의 계단식 Dendrimer의 합성)

  • Lee, Ji-Yun;Lee, Hwa-Yung;Bhagiyalakshmi, Margandan;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.91-94
    • /
    • 2009
  • 쌀겨회재에서 추출한 실리카원을 이용하여 메조포러스실리카 SBA-15를 합성하였으며, 이산화탄소에 대한 높은 선택성을 나타내는 아민기를 우수한 구조성을 지닌 메조포러스실리카에 그라프팅하였다. 아민기가 그라프팅된 메조포러스실리카에 높은 흡착능을 도출하기 위해서 dendrimer/SBA-15를 반응조건에 따라 합성하였다. 이와 같이 합성된 고체흡수제는 X-선 회절분석, 질소 흡,탈착 곡선, 분광분석 (FT-IR)등의 특성 분석을 수행하였고, 열중량반응기 및 충전층 반응기에서 이산화탄소 흡수실험을 수행하였다.

  • PDF

Physical and Mechanical Properties of Board Made from Carbonized Rice Husk (왕겨숯을 이용하여 제조한 보드의 물성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • This study was investigated on the properties of board made from carbonized rice husk differed in density of board, resin addition ratio and sawdust addition ratio. Water absorption is showed the lowest value to 80.09% when the resin addition ratio of 25%, as the density increased and sawdust addition ratio decreased, the water absorption was decreased. The measured thickness swelling satisfied with the quality standards of KS F 3104, so the feasibility of building interior has been confirmed in the dimensional stability. In case of resin addition ratio of 25%, the internal bond strength was satisfied quality standards of KS F 3104 to $0.244N/mm^2$. With increasing the density, resin and sawdust addition ratio, brinell hardness increased.

Synthesis of Methane-rich Gases(Alternative Energy) by Thermochemical Gasification from Waste Municipal and Lignocellulosic Materials (목질 폐재와 가정용 쓰레기의 열-화학적 분해에 의한 고수율 메탄가스(대체연료)의 합성)

  • Lee, Byung-Guen;Lee, Sun-Haing
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.13-19
    • /
    • 1989
  • Two different quartz types of gasification reactor were used for pyrolysis and gasification of sawdust, ricestraw, ricehusk and municipal wastes which contain only cellulosics., operating at 1 atmospheric and vacuum pressure respectively. Also a stainless steel autoclave gasification reactor was used which is possible to use up to 100 atmospheric pressures and $800^{\circ}C$ of reaction temperature to complete pyrolysis and gasification reaction. The catalysts used in this reaction w- ere $K_2CO_3$, $Na_2CO_3$, Ni and Ni-$K_2CO_3$ as CO-Catalyst. The product gas mixtures were identified to be CO, $CO_2$, $C_3H_3$, $CH_4$ and $CH_3CHO$ etc. by Gas Chromatography and Mass Spectrometry. The pressurized gasification reaction shows significant increase in terms of methane composition and yield of product gases, comparing with those from unpressurized gasification reactions. The total volume of product gas mixtures amounts to 1600-1800ml per1gof waste of waste lignocellulosics or municipal waste, and the metane content of the gas mixtures reached to 40%, when $800^{\circ}C$ of reaction temperature and 100 atmospheric pressures with Ni-$K_2CO_3$ as CO-catalyst in the pressurized gasification reaction were used. This results show that the product gas mixtures containing 40% of methane call be used for alternative enegy source.

  • PDF

Pellet Made of Agricultural By-product and Agricultural Pellet Boiler System (농림부산물 원료 펠릿 및 농업용 펠릿 난방기)

  • Kang, Y.K.;Ryou, Y.S.;Kcang, G.C.;Kim, J.G.;Kim, Y.H.;Jang, J.K.;Lee, H.M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.252.2-252.2
    • /
    • 2010
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce the large amount of energy from biomass around the world. In this study, to obtain basic data for practical application of wood pellet and wood pellet boiler system as heating system in agriculture, agricultural biomass resources were surveyed, pellet was made of agricultural by-product such as stem of rape, oat and rice, ricehusk and sawdust and wood pellet boiler system with capacity of 116 kW was manufactured and installed in greenhouse of $38.5m{\times}32m$. High heating value, bulk density and ash content of pellet made of agricultural by-product and efficiency and heating performance of this system was estimated. Rice straw was the largest agricultural biomass in 2005 and the total amount of rice straw converted into energy of $131.71{\times}10^{11}$ kJ. And in 2005, total amount of forest' by-product converted into energy of $29,277.05{\times}10^{11}$ kJ. High heating values of pellets made of agricultural by-products of stem and seed of rape, stem of oat, rice straw and rice husk were 16,034, 16,026, 16,089, 15,650, 15,044 kJ/kg respectively. High heating values of pellets made of agricultural by-products were 83.6% compared to that of wood pellet. Average bulk density of pellets made of agricultural by-products of stem and seed of rape, stem of oat, rice straw and rice husk was 1,400 $kg/m^3$. Ash contents of the pellets were 6.6, 7.0, 6.2, 5.5, 33% respectively. Ash content of rice husk pellet was the largest compared to other kind of pellets. To increase efficiency of agricultural pellet boiler, the boiler adopted secondary heat exchanger. The agricultural pellet boiler designed and manufactured in this study had high efficiency of 84.2% compared to the conventional agricultural pellet boiler, when water flow rate, exhaust gas temperature and average combustion furnace temperature were 39L/min, $180^{\circ}C$, $680^{\circ}C$ respectively. And pellet supplying and pausing time were 13, 43 seconds respectively. In March of 2010, prices of wood pellet, agricultural tax free diesel, diesel, kerosene were 350 won/kg, 811 won/L, 1,422 won/L, 976 Won/L respectively. Also in terms of energy, prices per same heating value were 77.8, 90.1, 158, 108.4 Won/Mcal. Energy saving rate of wood pellet was 16, 50, 39% compared to agricultural tax free diesel, diesel and kerosene respectively.

  • PDF