• Title/Summary/Keyword: rice germplasm

Search Result 98, Processing Time 0.022 seconds

Comparative Analyses for Aroma and Agronomic Traits of Native Rice Cultivars from Central Asia

  • Sarhadi, Wakil Ahmad;Hien, Nguyen Loc;Zanjani, Mehran;Yosofzai, Wahida;Yoshihashi, Tadashi;Hirata, Yutaka
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • Aromatic rice has become popular owing to its aroma. Growing demand for aromatic rice has spurred interest in the development of domestic cultivars that offer similar combinations of grain attributes such as texture, cooking characteristics, aroma, and taste. In this study, the most important agronomic attributes and aroma of 26 cultivars from Afghanistan, Iran, and Uzbekistan, and controls from Japan, Thailand, and India were characterized. Also $F_2$ populations derived from the cross between(Jasmine 85 aromatic$\times$Nipponbare non-aromatic) and(Jasmine 85$\times$Basmati 370 aromatic) were obtained. Tasting individual grains, cooking test, 1.7% KOH sensory test, and molecular marker analysis have been applied to distinguish between aromatic and non-aromatic rice. Diversity for some traits of agronomic importance, such as plant height was detected among countries, e.g. Afghan cultivars classified as tall, and Iranian and Uzbek intermediate and short, respectively. Differentiations of panicle, grain, leaf, basal internode, and culm dimension among rice cultivars, indicating the source of rice diversity in Central Asia. According to the results, 6 of 10, 2 of 7, and 0 of 6 of Afghan, Iranian, and Uzbek rice cultivars were scored as aromatic, respectively. Therefore, Afghan cultivars are a good source of aromatic rice germplasm for Central Asia. The expression between aromatic and non-aromatic, and aromatic and aromatic combinations has been evaluated. The observed segregation ratio of these crosses in the $F_2$ populations was tested by $x^2$ analysis against the expected ratio for a single gene. A segregation ratio of 3:1 between non-aromatic and aromatic combination has been detected, while segregation has not been detected between the aromatic and aromatic combinations. Also, parallel results were obtained from the tested aromatic rice cultivars. Thus, our results suggest that a single recessive gene controls aroma in all aromatic rice cultivars.

  • PDF

Occurrence of Off-type Plants in japonica/indica Hybrid Rice Cultivars

  • Lee, Jeom-Ho;Jeon, Yong-Hee;Hwang, Hung-Goo
    • Plant Resources
    • /
    • v.7 no.2
    • /
    • pp.141-146
    • /
    • 2004
  • Frequent occurrence of off-type plants in a given cultivar has been a serious problem in both breeder's and farmer's fields. An experiment was designed to examine the differences in rate of occurrence of off-type plants among Tongil-type cultivars (high yielding cultivars derived from indica/japonica hybridization) from which the possible cause of higher occurrence of off-type plant in a specific cultivar was deduced. Among five Tongil-type cultivars examined for morphological variant in the field, only one cultivar, Dasanbyeo, had off-type plants. When analyzed with SSR markers, off-type plants showed different band patterns from original cultivar, having several extra bands in addition to cultivar-specific band, suggesting that off-type plants were originated from Dasanbyeo, rather than originated from mixing or mishandling of seed materials with other cultivars. The possible cause of off-type occurrence seems to be natural pollination with other cuItivars adjacent to the original cultivar during seed multiplication. This was supported from the observation that self-crossed progeny of the off type plants showed a wide range of variation of agronomic traits which could not be observed when there was a smaller introduction of genes to the fixed germplasm as happened in the case of cultivar mutation. Another evidence supported this idea that Dasanbyeo showed much of difference in floral organ and behavior to other cultivar to be subjected to higher out-crossing than other cultivars examined.

  • PDF

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.17-17
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE_CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P)>7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.243-243
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P) >7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Functional Haplotypes and Evolutionary Analyses of SBE1 in Collected Rice Germplasm

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.216-216
    • /
    • 2022
  • The starch-branching enzymes (BEs) are responsible for synthesizing the amylopectin, which plays an important role in determining the structural and physical properties of starch granules. BE has two differently functioning isoforms (BEI and BEIIa/b) based on their difference in the chain-length pattern by the degree of polymerization (DP), which mainly contributes to the amylopectin chain length distribution in starch biosynthesis. In this study, we investigated functional haplotypes and evolutionary analyses of SBE1 in 374 rice accessions (320 Korean bred and 54 wild). The analyses were performed based on the classified subpopulations. Haplotype analysis generates a total of 8 haplotypes, of which only four haplotypes were functional carrying four functional SNPs in four different exons of SBE1 on chromosome 6. Nucleotide diversity analysis showed a highest pi-value in aromatic group (0.0029), while the lowest diversity value was in temperate japonica (0.0002), indicating the signal of this gene evolution origin. Different directional selections could be estimated by negative Tajima's D value of temperate japonica (-1.1285) and positive Tajima's D value of tropical japonica (0.9456), where the selective sweeps were undergone by both positive purifying and balancing selections. Phylogenetic analysis indicates a closer relationship of the wild with most of the cultivated subgroups indicating a common ancestor for SBE1 gene. FST-values indicate distant genetic relationships of temperate japonica from all other classified groups. PCA and population structure analysis show an admixed structure of wild and cultivated subpopulations in some proportions.

  • PDF

Identification of Subspecies-specific STS Markers and Their Association with Segregation Distortion in Rice(Oryza sativa L.)

  • Chin, Joong-Hyoun;Kim, Jung-Hee;Jiang, Wenzhu;Chu, Sang-Ho;Woo, Mi-Ok;Han, Longzhi;Brar, Darshan;Koh, Hee-Jong
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.175-184
    • /
    • 2007
  • Two subspecies, japonica and indica, have been reported in rice, which differ in several ecotypic traits. However, reproductive barriers in hybrid progenies between subspecies have been major obstacles in breeding programs using inter-subspecific hybridization. As the first step to elucidate the reproductive barriers, we developed subspecies-specific(SS) STS markers in this study. A total of 765 STS primers were designed through comparing DNA sequences at every $2{\sim}3$cM interval between japonica and indica rices, which are available at Web DBs such as IRGSP, NCBI, TIGR, and GRAMENE, and tested for subspecies-specificity using 15 indica and 15 japonica varieties of diverse origin. Of them, 67 STS markers were identified as SS STS markers and their subspecies-specificity scores were estimated. The SS markers were dispersed throughout the genome along chromosomes. Of them, 64 SS markers were mapped on an RIL population derived from a Dasanbyeo(indica)/TR22183(japonica) cross. Genomic inclination of RILs was evaluated based on the genotyping with different types of markers. Association test between markers and segregation distortion revealed that segregation distortion might not be the cause of generating SS markers. The SS markers will be applicable to estimate the genomic inclination of varieties or lines and to study the differentiation of indica and japonica, and ultimately to breed true hybrid rice varieties in which desirable characters from both subspecies are recombined.

  • PDF

Statistical Analysis of Amylose and Protein Content in Breeding Line Rice Germplasm Collected from East Asian Countries Based on Near-infrared reflectance spectroscopy (근적외선분광분석에 의한 육성계통 벼 유전자원의 아밀로스 및 단백질 성분함량에 관한 통계분석)

  • Oh, Sejong;Choi, Yu Mi;Yoon, Hyemyeong;Lee, Sukyeung;Lee, Myung Chul;Shin, Myoung-Jae;Yoo, Eunae;Hyun, Do Yoon;Chae, Byungsoo
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.298-317
    • /
    • 2019
  • A statistical analysis of 9,771 non-glutinous rice in breeding line germplasm collected from Korea (2,836), China (2,136), Japan (1,219), and the Philippines (1,213) was conducted using normal distribution, variability index value (VIV), analysis of variation (ANOVA) and Ducan's multiple range test (DMRT) based on the data obtained from NIRS analysis. According to the normal distribution, the average protein content was 7.9%, and non-glutinous rice ranging over 10% amylose had 23.6% average content. Most resources were between 5.3 and 10.5% in protein content, and 15.7 and 31.5% in amylose content. The VIV was 0.54 for protein, and 0.83 for amylose. The average amylose content was 25.18%, 24.54%, 22.08%, and 21.47% in Filipino, Chinese, Korean, and Japanese resources, respectively, wheereas the average protein content was found to be 8.19%, 7.79%, 7.58%, and 7.42% in Filipino, Chinese, Korean, and Japanese resources, respectively. The ANOVA of amylose and protein content showed significant differences at the level of 0.01. The F-test value was 412.2 for amylose content, and 108.4 for protein when compared with the critical value of 3.78. The DMRT of amylose and protein content showed significant differences (p<0.01) among resources from different countries. The Filipino resources had the highest level of amylose and protein content, whereas; the lowest level of amylose and protein content were found in Japanese when compared with resources of other origins. These results are recommended as helpful materials in the field of breeding.

Profiling of genes related with grain yield in rice germplasms

  • Jo, Su-Min;Kim, Tae-Heon;Shin, Dongjin;Lee, Ji-Youn;Han, Sang-Ik;Cho, Jun-Hyun;Song, You-Chun;Park, Dong-Soo;Oh, Myung-Gyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.96-96
    • /
    • 2017
  • Rice is a staple food for nearly half of the world's population, with more than 10,000 rice varieties providing almost one-quarter of the global per capita dietary energy supply. Grain size, panicle size and branch number, grain number in a panicle are directly associated with rice productivity. Recently several genes which increase grain yield were identified through map-based cloning. Gn1a, Cytokinin oxidase, is a major grain number QTL and regulates grain number per panicle. Dep1 increases panicle branching and reduced rachis length. SCM2 (APO1) was identified by a QTL for culm strength and increased spikelet number. OsSPL16 (GW8) controls grain size and shape and then increases 1000-weight of seed. In here, to identify genotype of genes related to yield in 400 of rice germplasms possessed in National Institute of Crop Science, we had first chosen 4 of well-known genes related to yield; Gn1a, Dep1, SCM2, and OsSPL16. Among these germplasms, 195, 382, 165, and 353 of germplasms harbored the dominant type of Gn1a, Dep1, SCM2, and OsSPL16, respectively. We grouped these germplasms into a total of 10 groups using genotypes of Gn1a, Dep1, SCM2 and OsSPL16. Most rice germplasms belong to group 1, harbored Gn1a, dep1, gw8 and APO1, and group 10, harbored gn1a, Dep1, GW8 and apo1. Hanareum2 is the highest productive cultivar in Korea but do not have dominant type OsSPL16, so belong to group 1. On the other hand, in the case of Unkwang, belongs to group 10, which has dominant type of OsSPL16 but do not have the remaining genes. We can grasp the differences in rice germplasms through the Profiling of genes related to these grain yield, which will be useful for cross-breeding to integrate grain yield genes. We are continuously observing the genotype and phenotype of rice that possesses grain yield genes.

  • PDF

Characterization of Amino Acid Contents in Grain of Core Collections of Korean Native Rice (벼 재래종 핵심 유전자원의 현미 아미노산 함량 평가)

  • Park, Eun-Jin;Kang, Jeong-Hoon;Kim, Kwang-Ho
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.269-277
    • /
    • 2008
  • Amino acid composition in grain of Korean native rice core collections was evaluated to identify the useful genotypes for quality enhancing rice breeding and value-added food development. Large variations were found in the contents of 16 amino acids among 388 genotypes tested with 14.9% of the minimum coefficient of variation (CV), and the contents of methionine and histidine showed the highest CV and the second high, respectively. The average values of total amino acid, total essential amino acid, lysine and threonine contents of Korean native rice collections were almost similar with those of cultivating japonica rice, Saechucheong. Among 388 native core collections Baekkokna, Daesona and Saducho were identified as high amino acid germplasm in total amino acid, total essential amino acid, lysine and threonine contents. And Seoksanjo and Sodujo were identified as low amino acid collections. Rice collections showing purple apiculus color tended to distribute in lower serine, proline, glutamic acid, glycine, alanine, valine, leucine, phenylalanine, arginine, and total amino acid contents compared with those of yellowish apiculus color collections. The glutinous rice collections showed the tendency of higher contents of serine, glutamic acid, alanine, valine and leucine compared with those of non-glutinous collections.