• Title/Summary/Keyword: rice breeding

Search Result 706, Processing Time 0.038 seconds

Application and utilization of marker assisted selection for biotic stress resistance in hybrid rice (Oryza sativa L.)

  • Song, Jae-Young;Ouk, Sothea;Nogoy, Franz Marielle;Nino, Marjohn C.;Kwon, Soon Wook;Ha, Woongoo;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.317-331
    • /
    • 2016
  • Development of disease resistant plant is one of the important objectives in rice breeding programs because biotic stresses can adversely affect rice growth and yield losses. This study was conducted to identify lines with multiple-resistance genes to biotic stress among 173 hybrid rice breeding lines and germplasms using DNA-based markers. Our results showed that one hybrid rice line [IR98161-2-1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66)] possessed 5 bacterial blight resistance genes (Xa4, xa5, Xa7, Xa13 and Xa21) while two hybrid rice lines [IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66) and 7292s (IR75589-31-27-8-33S(S1)/IR102758B)] possessed 3 bacterial blight resistance genes (Xa4, Xa7 and Xa21, and Xa3, Xa4 and xa5). Molecular survey on rice blast disease revealed that most of these lines had two different resistant genes. Only 11 lines possessed Pib, Pi-5, and Pi-ta. In addition, we further surveyed the distribution of insect resistant genes, such as Bph1, Bph18(t), and Wbph. Three hybrid breeding lines [IR98161-2-1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66), IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66), and 7292s (IR75589-31-27-8-33S(S1) /IR102758B)] contained all three resistance genes. Finally, we obtained four hybrid rice breeding lines and germplasms [IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66), Damm-Noeub Khmau, 7290s, and 7292s (IR75589-31-27-8-33S(S1)/IR102758B)] possessing six-gene combination. They are expected to provide higher level of multiple resistance to biotic stress. This study is important for genotyping hybrid rice with resistance to diverse diseases and pests. Results obtained in this study suggest that identification of pyramided resistance genes is very important for screening hybrid rice breeding lines and germplasms accurately for disease and pest resistance. We will expand their cultivation safely through bioassays against diseases, pests, and disaster in its main export countries.

Genetic diversity and population structure of rice accessions from South Asia using SSR markers

  • Cui, Hao;Moe, Kyaw Thu;Chung, Jong-Wook;Cho, Young-Il;Lee, Gi-An;Park, Yong-Jin
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • The population structure of a domesticated species is influenced by the natural history of the populations of its pre-domesticated ancestors, as well as by the breeding system and complexity of breeding practices implemented by humans. In the genetic and population structure analysis of 122 South Asia collections using 29 simple sequence repeat (SSR) markers, 362 alleles were detected, with an average of 12.5 per locus. The average expected heterozygosity and polymorphism information content (PIC) for each SSR locus were 0.74 and 0.72,respectively. The model-based structure analysis revealed the presence of three clusters with the 91.8% (shared > 75%) membership, with 8.2% showing admixture. The genetic distances of Clusters 1-3 were 0.55, 0.56, and 0.68, respectively. Polymorphic information content followed the same trend (Cluster 3 had the highest value and Cluster 1 had smallest value), with genetic distances for each cluster of 0.52, 0.52, and 0.65, respectively. This result could be used for supporting rice breeding programs in South Asia countries.

Days to Heading and Glossiness Variation of RILs derived from Hwayeong and Wandoaengmi 6

  • Chang-Min Lee;Hyun-Su Park;Man-Kee Baek;Jeonghwan Seo;Jae-Ryoung Park;O-Yeong Jeong;Min-A Jin;Song-Hee Park;Oporta Juan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.222-222
    • /
    • 2022
  • Improving the taste of rice in the breeding process is one of the important goals. However, it takes a lot of time and effort to select lines with good grain quality. MAS related to rice quality can help quickly and accurately select the elite lines in breeding programs. QTL qTV9, derived from Wandoaengmi 6, has been reported as a marker associated with improved glossiness of rice (Park et al., 2019). To confirm the function of QTL qTV9, 186 RILs derived from Hwayeong/Wandoaengmi6 were cultivated on ordinary planting cultivation for five years. The average DTH of Hwayeong and Wandoaengmi 6 was not significant at 99 and 97 days, respectively, but the averages of TV (toyo value) were 72.6 and 86.0, respectively. The DTH and TV of RIL vary from year to year. In 2017-2018, the average DTH was 98 days, which was significantly higher than the other three years. In 2018 and 2021, the average TV was 79.5 and 86.5, respectively, which were significantly higher than in other years. As a result of correlation analysis, DTH in the different years showed highly significant positive correlations (r = 0.71-0.92) from 0.71 to 0.92, whereas TV showed positive but weaker correlations (r = 0.42-0.71). The correlation between DTH and TV in each year was significant but weak (r = 0.25-0.64) and there was no correlation in 2017. The TV (77.6-88.7) of RILs with QTL qTV9 was significantly higher than that of RILs without qTV9 (72.6-84.9) for all five years. As a result of analyzing TV by DTH group, the TV of the lines with qTV9 in DTH groups (93-97) and (98-103) showed a significantly higher trend for all 5 years. And TV was not significant in DTH groups A, B, E, and F. This may have been influenced by factors such as insufficient populations between groups or differences in harvest timing. This study is expected to be used as data for improving the glossiness of cooked rice in breeding programs, and further study of the QTL qTV9 marker is required.

  • PDF

Identification of a Major QTL, qSTV11SG, Associated with Resistance to Rice Stripe Virus Disease Originated from Shingwangbyeo in Rice (Oryza Sativa L.) (신광벼 유래의 벼 줄무늬잎마름병 저항성 주동 QTL qSTV11SG탐색)

  • Kwak, Do-Yeon;Lee, Bong-Chun;Choi, Ilyoung;Yeo, Un-Sang;Cho, Jun-Hyun;Lee, Ji-Yoon;Song, You-Chun;Yun, Yeong-Nam;Park, Dong-Soo;Kang, Hang-Won;Nam, Min-Hee;Lee, Jong-Hee
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.464-469
    • /
    • 2011
  • Virus diseases often cause serious damage to rice production in Asia. The lack of information on virus resistance genes has been a major obstacle for the breeding of resistant varieties. In order to identify DNA marker associated with resistance against rice stripe virus (RSV), the quantitative trait locus (QTL) was carried out using advanced backcross population developed from a cross between RSV-resistant tongil type cultivar Shinkwang and susceptible japonica cultivar Ilpum. A RSV resistance QTL $qSTV11^{SG}$ explaining 44.2% of the phenotypic variation was identified on chromosome 11 of Tongil type rice cultivar 'Shingwang'. $qSTV11^{SG}$ was tightly linked to DNA marker RM6897. The RM6897 divided as resistance type allele and susceptible type alleles. Twenty seven resistant varieties showed the resistant-type allele and 23 susceptible varieties were susceptible-type allele to the marker of RM6897. This results and the molecular markers presented here may be useful in rice breeding for improving RSV resistance in japonica rice.

Influence of Harvest Time on Pasting Properties of Starch in Colored Rice

  • Kim, Sang-Kuk;Song, Young-Un;Kim, Se-Jong;Shin, Jong-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.4
    • /
    • pp.311-316
    • /
    • 2017
  • The relationship between mean air temperature after heading and starch characteristics of colored rice grains was investigated using three colored rice cultivars. Pasting temperature within each rice cultivar with different harvest times differed. The pasting temperatures of two rice cultivars, Hongjinju and Joseongheugchal, reached the highest at 40 days after heading and decreased during the late harvest time. Distribution of amylopectin in the Hongjinju rice cultivar at the earlier harvest time contained a greater number of very short chains with the degree of polymerization (DP) between 6 and 12 and fewer chains with a DP from 13 to 24 than that of the later harvest time. However, there was little difference in the distribution of the longer chains of $25{\leq}DP{\geq}36$ and $37{\leq}DP$ for latter harvest times compared to that of the earlier ones. It was suggested that the structure of amylopectin affected the varietal differences in patterns of chain length of amylopectin during grain filling. In addition, the control of ripening was different from that causing the pigment effects in the fine structure of amylopectin in the three colored rice cultivars. Larger starch granules were observed in the Joseongheugchal rice cultivar and smaller granules occurred in the Hongjinju rice cultivar. The present study revealed that later harvest times led to a clear increase in the mean granule size of starch in the three colored rice cultivars.

A Gene Functional Study of Rice Using Ac/Ds Insertional Mutant Population

  • Kim, So-Young;Kim, Chang-Kug;Kang, Min;Ji, Seung-Uk;Yoon, Ung-Han;Kim, Yong-Hwan;Lee, Gang-Seob
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Rice is the staple food of more than 50% of the world population. Cultivated rice has the AA genome (diploid, 2n = 24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems have been utilized as main insertional mutagens in rice. The Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertional mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been conducted by collaborative works in Korea.

Karyotype Analyses of a Rice Cultivar 'Nakdong' and its Four Genetically Modified Events by Conventional Staining and Fluorescence in situ Hybridization

  • Jeon, Eun Jin;Ryu, Kwang Bok;Kim, Hyun Hee
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.252-259
    • /
    • 2011
  • Conventional staining and fluorescence in situ hybridization (FISH) karyotypes of the non-genetically modified (GM) parental rice line, 'Nakdong' (Oryza sativa L. japonica), and its four GM rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1), and LS28 ${\times}$ Cry1Ac1 (events L/C1-1-3-1 and L/C1-3-1-1) were analyzed using 5S and 45S rDNAs as probes. Both parental and transgenic lines were diploids (2n=24) with one satellite chromosome pair. The lengths of the prometaphase chromosomes ranged from 1.50 to $6.30{\mu}m$. Four submetacentric and eight metacentric pairs comprised the karyotype of 'Nakdong' and its four GM lines. One pair of 5S rDNA signals was detected near the centromeric region of chromosome g in both the parental and transgenic lines. The 45S rDNA signals were detected on the secondary constrictions of the satellite chromosome pair in both the parental and transgenic lines. There was no significant difference in chromosome size, length, and composition between 'Nakdong' and its four GM lines. This research was conducted as a preliminary study for chromosomal detection of transgenes in GM rice lines and would be useful for their breeding programs.