• Title/Summary/Keyword: rice ash husk

Search Result 84, Processing Time 0.025 seconds

Application of Fuller's ideal curve and error function to making high performance concrete using rice husk ash

  • Hwang, Chao-Lung;Bui, Le Anh-Tuan;Chen, Chun-Tsun
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.631-647
    • /
    • 2012
  • This paper focuses on the application of Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of high performance concrete (HPC), with the aid of error function, and then to study the effect of rice husk ash (RHA) on the performance of HPC. The residual RHA, generated when burning rice husk pellets at temperatures varying from 600 to $800^{\circ}C$, was collected at steam boilers in Vietnam. The properties of fresh and hardened concrete are reviewed. It is possible to obtain the RHA concrete with comparable or better properties than those of the specimen without RHA with lower cement consumption. High flowing concrete designed by the proposed method was obtained without bleeding or segregation. The application of the proposed method for HPC can save over 50% of the consumption of cement and limit the use of water. Its strength efficiency of cement in HPC is 1.4-1.9 times higher than that of the traditional method. Local standards of durability were satisfied at the age of 91 days both by concrete resistivity and ultrasonic pulse velocity.

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

The Effects of Operational and Mechanical Factors on the Performance of Rice-Husk Furnace (왕겨연소기(燃燒機)의 성능(性能)에 영향(影響)을 마치는 설계(設計) 및 작동인자(作動因子)에 관(關)한 연구(硏究))

  • Park, Seung Je;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.39-48
    • /
    • 1983
  • This study was performed to obtain the basic data which could be used for the modification of the manual center-burner-type rice-husk furnace into a small scale automatic type for the multi-purpose use in the farm. For this purpose, first, the utilization feasibility of the rice-husk furnace in the farm was analyzed briefly in aspects of available amount of rice-husk for the fuel, annual operation time and replaceble amount of residential heating energy with rice-husk in the farm. For the experiment a prototype furnace geared with an automatic feeding device was fabricated, and feed rate, mold size and chimney height were changed to investigate the combustion efficiency of rice-husk and thermal efficiency of the furnace. Also, optimum and limiting operational factors were observed in each treatments. The results obtained are summarized as follows. 1. If the rice-husk is intensively used for residential heating in the farm for winter season, on an average 51 percent of the total heating energy can be replaced with the rice-husk. Therefore, development of a small scale automatic rice-husk furnace was recognized to be feasible. 2. The operational condition depending on husk-feed rates was very important factor for successive steady burning operation of the given furnace. When the feed-rate was 1.5 kg/hr, the top of the burning zone should be kept at the position about 55 cm from the bottom of the combustion chamber with the periodic removal of ash (termed as steady state position), which was 18 cm above the mold waist. When the feed rates were 2.4 kg/hr and 3.0 kg/hr, the steady state position was at about 4 cm above the mold waist. 3. The mold size affected inflow rate of air into the furnace and consequently CO content in the exhaust gas. The relatively bigger mold gave positive effect on the air-inflow rate. 4. When the husk-feed rates were 1.5 kg/hr, 2.4 kg/hr, 3.0 kg/hr, the combustion efficiencies of the rice-husk were 98.5%, 97.4% and 95.0%, the thermal efficiencies of the furnace were 93.4%, 93.2% and 87.6%, and CO content in the exhaust gas were 1.21%, 1.03%, and 2.43%, respectively. The air-inflow rates were decreased with the increase of feed rates. When the amount of excess air was 30-40%, the CO content in the exhaust gas was at the minimum level. 5. When the chimney height was lowered from 260 cm to 96 cm, the air-inflow rate was slightly decreased, but the average temperature in the combustion chamber, CO content in the exhaust gas and combustion and thermal efficiencies were not changed significantly. 6. The incidental problems associated with the protytype furnace were accumulation of the ash inside the mold, accumulation of the cinder between the outer-drum of the furnace and the combustion chamber wall, and accumulation of the cinder in the chimney.

  • PDF

Strength and Some Durability Properties of Concrete Containing Rice Husk Ash Produced in a Charcoal Incinerator at Low Specific Surface

  • Abalaka, A.E.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • Strength and some durability properties of concrete containing rice husk ash (RHA) predominantly composed of amorphous silica at a specific surface of 235 $m^2/kg$ produced using a charcoal incinerator were determined. The maximum ordinary Portland cement (OPC) replacement with the RHA increased with increase in water/binder (w/b) ratio of the concrete mixes. The results show that 15 % OPC could be substituted by the RHAwithout strength loss at w/b ratio of 0.50. The split tensile strength generally increased with increase in RHA content for the mixes.

Improving Compressive Strength of Concrete Adding Agriculture by-product (농업부산물을 혼입한 콘크리트의 압축강도 향상)

  • Jeong, Euy-Chang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.187-188
    • /
    • 2020
  • Recently, some researchers have found, as a part of the development of new materials, the rice straw ash can also be used as a pozzolanic material for concrete considering similar chemical properties of rice straw ash to that of rice husk ash. Therefore, the purpose of this study was to improve compressive strength of concrete adding agriculture by-product. Compressive strength were tested on rice straw ashes at 600℃ to identify improving strength effect.

  • PDF

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios (코코넛 섬유 혼입률에 따른 RHA 및 OPC 콘크리트의 역학적 특성)

  • Lee, Min-Hi;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Currently, Eco-friendly construction materials are widely utilized for reducing $CO_2$ emission in construction. Furthermore various engineering fibers are also added for improving a brittle behavior in concrete. In the paper, concrete specimens with 10% and 20% replacement ratio with RHA (Rice Husk Ash) are prepared, and engineering behaviors in RHA and OPC concrete are evaluated with different addition of coconut fiber from 0.125~0.375% of volume ratio. Several basic tests including compressive strength, tensile strength, flexural strength, impact resistance, and bond strength are performed, and crack width and deflections are also measured in flexural test. RHA is evaluated to be very effective in strength development and 0.125% of fiber addition leads significant improvement in tensile strength, ductility, and crack resistance. RHA and coconut fiber are effective construction material both for reutilization of limited resources and performance improvement in normal concrete.

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica-Rice Husk Ash Ternary Blended Concrete

  • Najigivi, Alireza;Khaloo, Alireza;zad, Azam Iraji;Rashid, Suraya Abdul
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.225-238
    • /
    • 2013
  • In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement-nano silica (NS)-rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of $SiO_2$ particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg-Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

An efficient robust cost optimization procedure for rice husk ash concrete mix

  • Moulick, Kalyan K.;Bhattacharjya, Soumya;Ghosh, Saibal K.;Shiuly, Amit
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.433-444
    • /
    • 2019
  • As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving desired strength and workability with least possible cost. The RCO simultaneously minimizes cost of RHABC production and its deviation considering feasibility of attaining desired strength and workability in presence of uncertainty. RHA related properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method (LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields RHABC mixes which is almost insensitive to uncertainty (i.e., robust solution) with nominal deviation from experimental mean values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost.

Thermal Characteristics of Pellets made of Agricultural and Forest by-products (농림부산물을 이용한 펠릿의 열적 특성)

  • Kang, Y.K.;Kang, G.C.;Kim, J.K.;Kim, Y.H.;Jang, J.K.;Ryu, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.61-65
    • /
    • 2011
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce the large amount of energy from biomass around the world. In this study, to obtain basic data for practical application of agricultural and forest by-products as fuel of heating system in agriculture, agricultural and forest biomass resources were surveyed, the pelletizer with capacity of $50\;kg{\cdot}h^{-1}$ was designed and manufactured and pellets were made by the pelletizer. High heating value, ash content, etc. of pellets made of agricultural and forest by-products were estimated. Straw of rice was the largest agricultural biomass in 2009 and the total amount of rice straw converted into energy of $299{\times}10^3$ TOE. And in 2009, amount of forest by-product converted into energy of $9,579{\times}10^3$ TOE. High heating values of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk were 16,034, 16,026, 16,089, 15,650, $15,044\;kJ{\cdot}kg^{-1}$ respectively. High heating values of pellets made of agricultural by-products were average 83.6% compared to that of wood pellet. Average bulk density of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk was $1,400\;kg{\cdot}m^{-3}$ ($1.4\;g{\cdot}cm^{-3}$). Ash contents of the pellets were 6.6, 7, 6.2, 5.5, 33% respectively. Rice husk pellet produced the largest ash content compared to other kinds of pellets.