• Title/Summary/Keyword: ribosomal stress

Search Result 28, Processing Time 0.021 seconds

In Silico Analysis of Gene Function and Transcriptional Regulators Associated with Endoplasmic Recticulum (ER) Stress (Endoplasmic recticulum stress와 관련된 유전자기능과 전사조절인자의 In silico 분석)

  • Kim, Tae-Min;Yeo, Ji-Young;Park, Chan-Sun;Rhee, Moon-Soo;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2009
  • It has been postulated that endoplasmic (ER) stress is involved in the development of several diseases. However, the detailed molecular mechanisms have not been fully understood. Therefore, we characterized a genetic network of genes induced by ER stress using cDNA microarray and gene set expression coherence analysis (GSECA), and identified gene function as well as several transcription regulators associated with ER stress. We analyzed time-dependent gene expression profiles in thapsigargin-treated Sk-Hep1 using an oligonucleotide expression chip, and then selected functional gene sets with significantly high expression coherence which was processed into functional clusters according to the expression similarities. The functions related to sugar binding, lysosome, ribosomal protein, ER lumen, and ER to golgi transport increased, whereas the functions with mRNA processing, DNA replication, DNA repair, cell cycle, electron transport chain and helicase activity decreased. Furthermore, functional clusters were investigated for the enrichment of regulatory motifs using GSECA, and several transcriptional regulators associated with regulation of ER-induced gene expression were found.

Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability

  • Dongkeun Park;Youngim Yu;Ji-hyung Kim;Jongbin Lee;Jongmin Park;Kido Hong;Jeong-Kon Seo;Chunghun Lim;Kyung-Tai Min
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.374-386
    • /
    • 2023
  • Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.

Survey of Genes Responsive to Long-Term Heat Stress Using a cDNA Microarray Analysis in Mud Loach (Misgurnus mizolepis) Liver (장기 고온 스트레스에 대한 미꾸라지(Misgurnus mizolepis) 간 조직 내 유전자 발현 반응의 cDNA microarray 분석)

  • Cho, Young Sun;Lee, Sang Yoon;Noh, Choong Hwan;Nam, Yoon Kwon;Kim, Dong Soo
    • Korean Journal of Ichthyology
    • /
    • v.18 no.2
    • /
    • pp.65-77
    • /
    • 2006
  • Gene transcripts potentially responsive to the heat stress were surveyed by cDNA microarray analysis in mud loach (Misgurnus mizolepis). Transcriptional profiles of hepatic tissue in the fish exposed to either $23^{\circ}C$ or $32^{\circ}C$ for 4 weeks were compared each other by 3 replicated hybridization assays using 1,124 unigene clones selected from mud loach liver expressed sequence tags (ESTs). A total of 93 clones showed the substantially increased mRNA levels (>2-fold) in $32^{\circ}C$-exposed group when compared in $23^{\circ}C$control group. It includes various enzymes and proteins involved in energy pathway, protease/protein metabolisms, immune/antioxidant functions, cytoskeleton/cell structure, transport and/or signal transduction. Maximum level of increase was up to 15-fold relative to $23^{\circ}C$ treatment. Heat exposure also resulted in the significant decrease (less than 50% relative to $23^{\circ}C$-exposed fish) of the transcriptional activities in 85 genes. Besides the above categories, yolk protein (vitellogenin) and ribosomal proteins were notably down regulated in the fish exposed to heat stress. A number of novel gene transcripts were also detected in both up-regulated and down-regulated groups.

Physiological and Proteomic Responses of Barley Seedlings to Salt Stress (보리의 생육초기 염 스트레스에 따른 생리적 반응과 프로테옴 변화)

  • Kim, Dea-Wook;Yun, Seong-Kun;Park, Hyoung-Ho;Hwang, Jong-Jin;Han, Ok-Kyu;Park, Tae-Il;Jung, Gun-Ho;Lee, Jae-Eun;Kim, Sun-Lim;Chung, Young-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.537-545
    • /
    • 2011
  • This study was conducted to obtain basic information on physiological and proteomic responses of barley seedlings to salt stress. Shoot dry weight decreased significantly as the level of soil salinity increased. Salt stress-induced decrease of relative shoot dry weight was lower in cv. "Sanglok" than in cv. "Sunwoo". Under the salt stress, SPAD value decreased, and the value was higher in cv. "Sanglok" than in cv. "Sunwoo". Sodium ion content in the leaves increased as NaCl concentration increased, and the content was higher in cv. "Sunwoo" than in cv. "Sanglok". The K+/Na+ ratio was higher in cv. "Sanglok" than in cv. "Sunwoo". Salt stress-induced alterations in protein expression of the leaves were detected by two dimensional electrophoresis, and 47 protein spots showing altered expression were selected. Among the selected protein spots, 17 protein spots were up-regulated and 28 spots down-regulated in cv. "Sanglok". In cv. "Sunwoo", 14 protein spots were up-regulated and 27 spots down-regulated. Out of 47 deferentially expressed protein spots, 18 protein spots were identified using mass spectrometry and NCBI protein database. Among the identified proteins, ten proteins are known to be involved in various stress responses, but the others are not directly involved in stress responses.

DNA Microarrav Analysis on Saccharomyces cerevisiae under High Carbon Dioxide Concentration in Fermentation Process

  • Nagahisa, Keisuke;Nakajima, Toshiharu;Yoshikawa, Katsunori;Hirasawa, Takashi;Katakura, Yoshio;Furusawa, Chikara;Shioya, Suteaki;Shimizu, Hiroshi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.451-461
    • /
    • 2005
  • The effect of carbon dioxide on yeast growth was investigated during the cultivation of pH 5.0 and pH 6.8. by replacing the nitrogen part with carbon dioxide under aerobic conditions. The values of the specific growth rate under pH 5.0 and pH 6.8 conditions became 64.0% and 46.9%, respectively, compared to those before the change in gas composition. This suggests that the effect of carton dioxide was greater pronounced in pH 6.8 than in pH 5.0. The genome-wide transcriptional response to elevated carbon dioxide was examined using a DNA microarray. As for upregulated genes, it was noteworthy that 3 genes were induced upon entry into a stationary phase and 6 genes were involved in stress response. Of 53 downregulated genes, 22 genes were involved in the ribosomal biogenesis and assembly and 5 genes were involved in the lipid metabolism. These facts suggest that carbon dioxide could bring the cell conditions partially to a stationary phase. The ALD6 gene encoding for cytosolic acetaldehyde dehydrogenase was downregulated, which would lead to a lack of cell components for the growth. The downregulation of ALD6 was greater in pH 6.8 than in pH 5.0. consistent with physiological response. This suggests that it might be the most effective factor for growth inhibition.

Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces

  • Ji, Keunho;Jang, Na Young;Kim, Young Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1568-1577
    • /
    • 2015
  • The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β-glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'-azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim;Chang, Yu-Jung;Chung, Yun-Jo;Kim, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1368-1376
    • /
    • 2008
  • In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.21.1-21.11
    • /
    • 2016
  • Background: The evaluation of suitable reference genes as normalization controls is a prerequisite requirement for launching quantitative reverse transcription-PCR (RT-qPCR)-based expression study. In order to select the stable reference genes in abalone Haliotis discus hannai tissues (gill and hepatopancreas) under heavy metal exposure conditions (Cu, Zn, and Cd), 12 potential candidate housekeeping genes were subjected to expression stability based on the comprehensive ranking while integrating four different statistical algorithms (geNorm, NormFinder, BestKeeper, and ${\Delta}CT$ method). Results: Expression stability in the gill subset was determined as RPL7 > RPL8 > ACTB > RPL3 > PPIB > RPL7A > EF1A > RPL4 > GAPDH > RPL5 > UBE2 > B-TU. On the other hand, the ranking in the subset for hepatopancreas was RPL7 > RPL3 > RPL8 > ACTB > RPL4 > EF1A > RPL5 > RPL7A > B-TU > UBE2 > PPIB > GAPDH. The pairwise variation assessed by the geNorm program indicates that two reference genes could be sufficient for accurate normalization in both gill and hepatopancreas subsets. Overall, both gill and hepatopancreas subsets recommended ribosomal protein genes (particularly RPL7) as stable references, whereas traditional housekeepers such as ${\beta}-tubulin$ (B-TU) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were ranked as unstable genes. The validation of reference gene selection was confirmed with the quantitative assay of MT transcripts. Conclusions: The present analysis showed the importance of validating reference genes with multiple algorithmic approaches to select genes that are truly stable. Our results indicate that expression stability of a given reference gene could not always have consensus across tissue types. The data from this study could be a good guide for the future design of RT-qPCR studies with respect to metal regulation/detoxification and other related physiologies in this abalone species.