• Title/Summary/Keyword: ribosomal stress

Search Result 29, Processing Time 0.019 seconds

The translational landscape as regulated by the RNA helicase DDX3

  • Park, Joon Tae;Oh, Sekyung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.125-135
    • /
    • 2022
  • Continuously renewing the proteome, translation is exquisitely controlled by a number of dedicated factors that interact with the ribosome. The RNA helicase DDX3 belonging to the DEAD box family has emerged as one of the critical regulators of translation, the failure of which is frequently observed in a wide range of proliferative, degenerative, and infectious diseases in humans. DDX3 unwinds double-stranded RNA molecules with coupled ATP hydrolysis and thereby remodels complex RNA structures present in various protein-coding and noncoding RNAs. By interacting with specific features on messenger RNAs (mRNAs) and 18S ribosomal RNA (rRNA), DDX3 facilitates translation, while repressing it under certain conditions. We review recent findings underlying these properties of DDX3 in diverse modes of translation, such as cap-dependent and cap-independent translation initiation, usage of upstream open reading frames, and stress-induced ribonucleoprotein granule formation. We further discuss how disease-associated DDX3 variants alter the translation landscape in the cell.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder;Appukuttan, Deepti;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1118-1122
    • /
    • 2014
  • The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U;Kim, Young-Hoon;Cho, In-Shick;Kang, Ja-Heon;Chun, Il-Byung;Kim, Kwang-Hyun;Oh, Se-Jong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.249-252
    • /
    • 2009
  • Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).

Transcription Profiles of Human Cells in Response to Sodium Arsenite Exposure

  • Lee, Te-Chang;Konan Peck;Yih, Ling-Huei
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.59-69
    • /
    • 2001
  • Arsenic exposure is associated with several human diseases, including cancers, atherosclerosis, hypertension, and cerebrovascular diseases. In cultured cells, arsenite, an inorganic arsenic com-pound, was demonstrated to interfere with many physiological functions, such as enhancement of oxidative stress, delay of cell cycle progression, and induction of structural and numerical changes of chromosomes. The objective of this study is to investigate the effects of arsenic exposure on gene expression profiles by colorimetric cDNA microarray technique. HFW (normal human diploid skin fibroblasts), CL3 (human lung adenocarcinoma cell line), and HaCaT (immortalized human keratinocyte cell line) were treated with 5 $\mu\textrm{M}$ or 10 $\mu\textrm{M}$ sodium arsenite for 6 or 16 h, respectively. By a dual-color detection system, the expression profile of arsenite-treated cultures was compared to that of control cultures. Several genes expressed differentially were identified on the microarray membranes. For example, MDM2, SWI/SNF, ubiquitin specific protease 4, MAP3K11, RecQ protein-like 5, and Ribosomal protein Ll0a were consistently induced in all three cell types by arsenite, whereas prohibitin, cyclin D1, nucleolar protein 1, PCNA, Nm23, and immediate early protein (ETR101) were apparently inhibited. The present results suggest that arsenite insults altered the expression of several genes participating in cellular responses to DNA damage, stress, transcription, and cell cycle arrest.

  • PDF

Inactivation of Sirtuin2 protects mice from acetaminophen-induced liver injury: possible involvement of ER stress and S6K1 activation

  • Lee, Da Hyun;Lee, Buhyun;Park, Jeong Su;Lee, Yu Seol;Kim, Jin Hee;Cho, Yejin;Jo, Yoonjung;Kim, Hyun-Seok;Lee, Yong-ho;Nam, Ki Taek;Bae, Soo Han
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.190-195
    • /
    • 2019
  • Acetaminophen (APAP) overdose can cause hepatotoxicity by inducing mitochondrial damage and subsequent necrosis in hepatocytes. Sirtuin2 (Sirt2) is an $NAD^+$-dependent deacetylase that regulates several biological processes, including hepatic gluconeogenesis, as well as inflammatory pathways. We show that APAP decreases the expression of Sirt2. Moreover, the ablation of Sirt2 attenuates APAP-induced liver injuries, such as oxidative stress and mitochondrial damage in hepatocytes. We found that Sirt2 deficiency alleviates the APAP-mediated endoplasmic reticulum (ER) stress and phosphorylation of the p70 ribosomal S6 kinase 1 (S6K1). Moreover, Sirt2 interacts with and deacetylates S6K1, followed by S6K1 phosphorylation induction. This study elucidates the molecular mechanisms underlying the protective role of Sirt2 inactivation in APAP-induced liver injuries.

Assessment of the gastrointestinal microbiota using 16S ribosomal RNA gene amplicon sequencing in ruminant nutrition

  • Minseok Kim
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.364-373
    • /
    • 2023
  • The gastrointestinal (GI) tract of ruminants contains diverse microbes that ferment various feeds ingested by animals to produce various fermentation products, such as volatile fatty acids. Fermentation products can affect animal performance, health, and well-being. Within the GI microbes, the ruminal microbes are highly diverse, greatly contribute to fermentation, and are the most important in ruminant nutrition. Although traditional cultivation methods provided knowledge of the metabolism of GI microbes, most of the GI microbes could not be cultured on standard culture media. By contrast, amplicon sequencing of 16S rRNA genes can be used to detect unculturable microbes. Using this approach, ruminant nutritionists and microbiologists have conducted a plethora of nutritional studies, many including dietary interventions, to improve fermentation efficiency and nutrient utilization, which has greatly expanded knowledge of the GI microbiota. This review addresses the GI content sampling method, 16S rRNA gene amplicon sequencing, and bioinformatics analysis and then discusses recent studies on the various factors, such as diet, breed, gender, animal performance, and heat stress, that influence the GI microbiota and thereby ruminant nutrition.

Complete Genome Sequence of Levilactobacillus brevis KL251 Isolate from Kimchi

  • Kiyeop Kim;Da Jeong Shin;Junghee Lee;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.18-22
    • /
    • 2024
  • In this study, we performed whole-genome sequencing of Levilactobacillus brevis KL251 (KL251) isolated from kimchi. The KL251 genome, characterized by a circular chromosome spanning 2,345,062 base pairs with a GC content of 45.78%, was analyzed. KL251 contains 2,275 coding DNA sequences (CDSs), 56 transfer RNAs (tRNAs), and 4 ribosomal RNAs (rRNAs). Genes associated with gamma-aminobutyric acid (GABA) production and CRISPR-Cas systems were identified and could potentially be used for GABA synthesis and defense against foreign DNA. Additionally, the presence of functional genes involved in isoprenoid biosynthesis, glutathione generation, and redox sensing showed that cellular metabolism and stress responses were important characteristics of this genome. These genomic findings suggest that the KL251 strain could potentially have several applications, including food fermentation, probiotics, dairy product starters, and the development of health-enhancing products.

Structural Disorganization of Intestinal Tumor Spheroid by Microbial Ribotoxins (방사선 모사 미생물 유래 리보솜 스트레스에 의한 대장암 스페로이드 구조 결함 유발)

  • Kim, Juil;Kim, Joongkon;Yu, Mira;Moon, Yuseok
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.164-171
    • /
    • 2019
  • Radiation therapy has many side effects, such as digestive mucosal ulcers, without regard to its efficacy. The purpose of this study is to address an alternative method to replace the limitation of radiation therapy using radiomimetic microbial ribotoxins. In the evaluation of cancer therapy, we analyzed the formation of colorectal cancer (CRC) cell spheroids, which can take into account the heterogeneous cellular constitution, tumor stem cells, and the surrounding microenvironment. Ribotoxic stress interfered with the spheroid structure composed of relatively small clusters. Spheroids under ribotoxic stress were structurally sparse and their shrinkage was very slow. In the control group, the clusters of strongly aggregated cells were resistant to physical stress, but the ribotoxic stress-exposed spheroids were easily broken up by the physical stress. Moreover, the ribosome-insulted CRC cells slowly migrated to form clusters and the cell-cell junctional points in the ribosome-insulted spheroids were rarer than those in the control CRC spheroid. Moreover, levels of the cell-to-cell junctional protein E-cadherin were suppressed by ribotoxic stress in both allograft and xenograft spheroids. In conclusion, the radiomimetic microbial ribotoxins induced structural defects in CRC cell spheroids via retardation of migration and cell-cell junction in the formation of three-dimensional structures, and provides a basis for the mechanism of pharmacological radiomimetic anticancer actions as an alternate to radiotherapy against cancer.

DNA Repair Activity of Human rpS3 is Operative to Genotoxic Damage in Bacteria

  • JANG CHANG-YOUNG;LEE JAE YUNG;KIM JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.484-490
    • /
    • 2005
  • Human ribosomal protein S3 (rpS3), which has a DNA repair endonuclease activity, is a multifunctional protein. This protein is involved in DNA repair, translation, and apoptosis. In particular, rpS3 has a lyase activity, which cleaves the phosphodiester bond of damaged sites such as cyclobutane pyrimidine dimers and AP sites. Here, using deletion analysis, we identified that the repair endonuclease domain resides in the C-terminal region (165-243 aa) of rpS3. We also found that ectopic expression of GST-rpS3 in bacterial strain BL21 promoted the resistance of these cells to ultraviolet (UV) radiation and hydrogen peroxide ($H_{2}O_{2}$) treatment. The repair domain of rpS3 was sufficient to exhibit the resistance to UV irradiation and recover cell growth and viability, showing that the repair activity of rpS3 is responsible for the resistance to UV irradiation. Our study suggests that rpS3 is able to process DNA damage in bacteria via its repair domain, showing the resistance to genotoxic stress. This implies that rpS3-like activity could be operative in bacteria.