• Title/Summary/Keyword: ribosomal stress

Search Result 28, Processing Time 0.022 seconds

The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology

  • Park, Jumin;Park, Jongmin;Lee, Jongbin;Lim, Chunghun
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.439-450
    • /
    • 2021
  • Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.

JNK activation induced by ribotoxic stress is initiated from 80S monosomes but not polysomes

  • Kim, Tae-Sung;Kim, Hag Dong;Park, Yong Jun;Kong, EunBin;Yang, Hee Woong;Jung, Youjin;Kim, YongJoong;Kim, Joon
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.502-507
    • /
    • 2019
  • Translation is a costly, but inevitable, cell maintenance process. To reduce unnecessary ATP consumption in cells, a fine-tuning mechanism is needed for both ribosome biogenesis and translation. Previous studies have suggested that the ribosome functions as a hub for many cellular signals such as ribotoxic stress response, mammalian target of rapamycin (mTOR), and ribosomal S6 kinase (RSK) signaling. Therefore, we investigated the relationship between ribosomes and mitogen-activated protein kinase (MAPK) activation under ribotoxic stress conditions and found that the activation of c-Jun N-terminal kinases (JNKs) was suppressed by ribosomal protein knockdown but that of p38 was not. In addition, we found that JNK activation is driven by the association of inactive JNK in the 80S monosomes rather than the polysomes. Overall, these data suggest that the activation of JNKs by ribotoxic stress is attributable to 80S monosomes. These 80S monosomes are active ribosomes that are ready to initiate protein translation, rather than polysomes that are already acting ribosomes involved in translation elongation.

The Viability Change of Yeast Cell Responding to Trehalose Accumulation and Maintaining Neutral Trehalase Activity under Extracellular pH Acidified by $H_2SO_4$

  • Jin, Ingnyol;Yun, Haesun;Paik, Sanhkyoo;Kim, Ilsup;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.47-52
    • /
    • 2002
  • Saccharomyces cerevisiae KNU5377 (KNU5377) and S. cerevisiae ATCC24858 (ATCC24858) were exposed to $H_2SO_4$ as a stress, which was added at various concentrations to a YPD media. The growth of KNU5377 was reduced to approximately 60% in the YPD media containing 40 nm sulfuric acid when compared to the non-stressed condition. When their growth was monitored during an overnight culture, two strains, KNU5377 and ATCC24858, could not grow when exposed to over 50 mM of sulfuric acid. After a short exposure to this acid for 1 h, KNU5377 exhibited stronger resistance against $H_2SO_4$ than ATCC24858. The neutral trehalase activity of KNU5377 unchanged despite under various concentrations of $H_2SO_4$. In contrast, It at of ATCC24858 was much low at higher $H_2SO_4$concentrations. Trehalose, a non-reducing disaccharide, was maximally accumulated after a short exposure to 60 nm $H_2SO_4$ for KNU5377, but it was reduced under more severe stressful conditions. These results suggest that KNU5377 should modulate the trehalose concentrations under the severe stress condition of high sulfuric acid concentrations. The most highly induced protein in the KNU5377 exposed to sulfuric acid was found to be an approximately 23 kDa protein, which was revealed to be the 605 large subunit ribosomal protein, Ll3 by FASTA search results.

  • PDF

Cloning and Regulation of Schizosaccharomyces pombe Gene Encoding Ribosomal Protein L11

  • Kim, Hong-Gyum;Lee, Jin-Joo;Park, Eun-Hee;Sa, Jae-Hoon;Ahn, Ki-Sup;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.379-384
    • /
    • 2001
  • The cDNA encoding ribosomal protein was identified from a cDNA library of Schizosaccharomyces pombe. The nucleotide sequence of the 548 by cDNA clone reveals an open reading frame, which encodes a putative protein of 166 amino acids with a molecular mass of 18.3 kDa. The amino acid sequence of the S. pombe L11 protein is highly homologous with those of rat and fruit, while it is clearly less similar to those of prokaryotic counterparts. The 1,044 by upstream sequence, and the region encoding N-terminal 7 amino acids of the genomic DNA were fused into the promoterless $\beta$-galactosidase gene of the shuttle vector YEp357 in order to generate the fusion plasmid pHY L11. Synthesis of $\beta$-galactosidase from the fusion plasmid varied according to the growth curve. It decreased significantly in the growth-arrested yeast cells that were treated with aluminum chloride and mercuric chloride. However, it was enhanced by treatments with cadmium chloride ($2.5\;{\mu}M$), zinc chloride ($2.5\;{\mu}M$), and hydrogen peroxide (0.5 mM). This indicates that the expression of the L,11 gene could be induced by oxidative stress.

  • PDF

Draft genome sequence of Miniimonas arenae KCTC 19750T isolated from sea sand (해양모래로부터 분리된 Miniimonas arenae KCTC 19750T의 유전체 분석)

  • Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.278-279
    • /
    • 2019
  • Miniimonas arenae KCTC $19750^T$ belonging to family Beutenbergiaceae of the phylum Actinobacteria was isolated from sea sand. I report here the draft genome sequence of strain KCTC $19750^T$. The draft genome comprises a size of 3,402,690 bp, a mean G + C content of 73.6%, 2,957 coding sequences, 2 ribosomal RNA genes, and 44 transfer RNA genes. Also, we found that genes involved in osmotic stress response were identified in its genome. The availability of the genome sequences will provide a more understanding of strain KCTC $19750^T$ as a unique member of the genus Miniimonas.

N-terminal formylmethionine as a novel initiator and N-degron of eukaryotic proteins

  • Kim, Jeong-Mok
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.163-164
    • /
    • 2019
  • The ribosomal synthesis of proteins in the eukaryotic cytosol has always been thought to start from the unformylated N-terminal (Nt) methionine (Met). In contrast, in virtually all nascent proteins in bacteria and eukaryotic organelles, such as mitochondria and chloroplasts, Nt-formyl-methionine (fMet) is the first building block of ribosomal synthesis. Through extensive approaches, including mass spectrometric analyses of the N-termini of proteins and molecular genetic techniques with an affinity-purified antibody for Nt-formylation, we investigated whether Nt-formylated proteins could also be produced and have their own metabolic fate in the cytosol of a eukaryote, such as yeast Saccharomyces cerevisiae. We discovered that Nt-formylated proteins could be generated in the cytosol by yeast mitochondrial formyltransferase (Fmt1). These Nt-formylated proteins were massively upregulated in the stationary phase or upon starvation for specific amino acids and were crucial for the adaptation to specific stresses. The stress-activated kinase Gcn2 was strictly required for the upregulation of Nt-formylated proteins by regulating the activity of Fmt1 and its retention in the cytosol. We also found that the Nt-fMet residues of Nt-formylated proteins could be distinct N-terminal degradation signals, termed fMet/N-degrons, and that Psh1 E3 ubiquitin ligase mediated the selective destruction of Nt-formylated proteins as the recognition component of a novel eukaryotic fMet/N-end rule pathway, termed fMet/N-recognin.

Elucidation of Copper and Asparagine Transport Systems in Saccharomyces cerevisiae KNU5377 Through Genome-Wide Transcriptional Analysis

  • KIM IL-SUP;YUN HAE SUN;SHIMISU HISAYO;KITAGAWA EMIKO;IWAHASHI HITOSHI;JIN INGNYOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1240-1249
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 has potential as an industrial strain that can ferment wasted paper for fuel ethanol at $40^{\circ}C$ [15, 16]. To understand the characteristics of the strain, genome-wide expression was performed using DNA microarray technology. We compared the homology of the DNA microarray between genomic DNAs of S. cerevisiae KNU5377 and a control strain, S. cerevisiae S288C. Approximately $97\%$ of the genes in S. cerevisiae KNU5377 were identified with those of the reference strain. YHR053c (CUP1), YLR155c (ASP3), and YDR038c (ENA5) showed lower homology than those of S. cerevisiae S288C. In particular, the differences in the regions of YHR053c and YLR155c were confirmed by Southern hybridization, but did not with that of the region of YDR038c. The expression level of mRNA in S. cerevisiae KNU5377 and S288C was also compared: the 550 ORFs of S. cerevisiae KNU5377 showed more than two-fold higher intensity than those of S. cerevisiae S288C. Among the 550 ORFs, 59 ORFs belonged to the groups of ribosomal proteins and mitochondrial ribosomal proteins, and 200 ORFs belonged to the group of cellular organization. DIP5 and GAP1 were the most highly expressed genes. These results suggest that upregulated DIP5 and GAP 1 might take the place of ASP3 and, additionally, the sensitivity against copper might be contributable to the lowest expression level of copper-binding metallothioneins encoded by CUP 1a (YHR053c) and CUP1b (YHR055c) in S. cerevisiae KNU5377.

Isolation and Characterization of the Streptococcus mutans from Korean Children with Caries

  • Kang, Kyung-Hee;Kim, Ji-Young;Nam, Jin-Sik;Jin, Ingn-Yol
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.341-347
    • /
    • 2007
  • Streptococcus mutans, one of a major causal agents of dental caries, is component of the dental plaque and produces various organic acids such as lactic acid as the end-product of glycolysis. In this study, we isolated S. mutans from Korean children with caries and also investigated the expression of protein under acid stress. S. mutans was identified at the species level using a 16S ribosomal DNA sequencing comparison method. The primer specificity was tested on eleven S. mutans strains isolated from Korean children with caries. The data showed that eleven strains are S. mutans. At treatment of concentration of 20 mM lactic acid in the mid-log phage, K-7 exhibited the highest maximum culture OD compared with those of other groups. As a consequence, we examined the expression of protein under 20 mM lactic acid stress using S. mutans K-7. The results of 2D gel electrophoresis by image analysis showed that thirteen proteins are up-regulated under the stress. Further study is being focused on amino acid analysis by mass spectrometry in order to analyze those spots.

  • PDF