• 제목/요약/키워드: ribosomal protein S1

검색결과 109건 처리시간 0.023초

Identification of new ligands for RNA pseudoknot by structure-based screening of chemical database

  • Park, So-Jung;Jeong, Seung-Hyun;Kim, Yang-Gyun;Park, Hyun-Ju
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.254.2-254.2
    • /
    • 2003
  • For many viruses, -1 ribosomal frameshifting regulate protein synthesis using an RNA pseudoknot. The integrity of pseudoknot stability and structure is the important feature for efficient frameshifting. Thus, small molecules interacting with viral RNA pseudoknots would be potential antiviral agents targeting\ulcorner frameshifting system in viruses. X-ray structure of RNA pseudoknot complexed with biotin has been reported, in which biotin is bound at the interface between the pseudoknot's stacked helices. (omitted)

  • PDF

The Viability Change of Yeast Cell Responding to Trehalose Accumulation and Maintaining Neutral Trehalase Activity under Extracellular pH Acidified by $H_2SO_4$

  • Jin, Ingnyol;Yun, Haesun;Paik, Sanhkyoo;Kim, Ilsup;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • 제12권2호
    • /
    • pp.47-52
    • /
    • 2002
  • Saccharomyces cerevisiae KNU5377 (KNU5377) and S. cerevisiae ATCC24858 (ATCC24858) were exposed to $H_2SO_4$ as a stress, which was added at various concentrations to a YPD media. The growth of KNU5377 was reduced to approximately 60% in the YPD media containing 40 nm sulfuric acid when compared to the non-stressed condition. When their growth was monitored during an overnight culture, two strains, KNU5377 and ATCC24858, could not grow when exposed to over 50 mM of sulfuric acid. After a short exposure to this acid for 1 h, KNU5377 exhibited stronger resistance against $H_2SO_4$ than ATCC24858. The neutral trehalase activity of KNU5377 unchanged despite under various concentrations of $H_2SO_4$. In contrast, It at of ATCC24858 was much low at higher $H_2SO_4$concentrations. Trehalose, a non-reducing disaccharide, was maximally accumulated after a short exposure to 60 nm $H_2SO_4$ for KNU5377, but it was reduced under more severe stressful conditions. These results suggest that KNU5377 should modulate the trehalose concentrations under the severe stress condition of high sulfuric acid concentrations. The most highly induced protein in the KNU5377 exposed to sulfuric acid was found to be an approximately 23 kDa protein, which was revealed to be the 605 large subunit ribosomal protein, Ll3 by FASTA search results.

  • PDF

Multiple functions of human UV DNA repair endonuclease III

  • Jang, Chang-Young;Kim, Joon
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.182-185
    • /
    • 2002
  • There are 3 UV DNA repair endonuclease activities in mammalian cells that cleave UV -irradiated DNA. Interestingly, mammalian UV endonuclease III with MW of 26.7kD has a lyase activity on AP sites. It also cleaves the phosphodiester bond within a cyclobutane pyrimidine dimer. Genomic analysis of human repair endonuclease III gene revealed that this gene has 100% sequence identity with ribosomal protein S3 (rpS3). Therefore, rpS3 seems to function both in translation and in DNA repair. This gene of about 6.1 kb contains 6 introns and 7 exons, and the first and fifth introns of human rpS3 gene contain functional U15 small nucleolar (sno) RNAs which appear to be involved in ribosome assembly. It is to be noted that the column profile of the endonuclease activity of rpS3 appears to be altered in Xeroderma Pigmentosum (XP) group D cells compared to normal cells indicating that this protein is involved in XP disease as well. XP is a human disease characterized by high sensitivity of skin by UV- or sun-light irradiation and by high frequency of developing skin cancers. We also report here that rpS3 protein is involved in other cellular functions.

  • PDF

The Protein Kinase 2 Inhibitor CX-4945 Induces Autophagy in Human Cancer Cell Lines

  • Kim, Jiyeon;Park, Mikyung;Ryu, Byung Jun;Kim, Seong Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2985-2989
    • /
    • 2014
  • Autophagy is a self-digestion process in which intracellular structures are degraded in response to stress. Notably, prolonged autophagy leads to cell death. In this study, we investigated whether CX-4945, an orally available protein kinase 2 (CK2) inhibitor, induces autophagic cell death in human cervical cancer-derived HeLa cells and in human prostate cancer-derived LNCaP cells. CX-4945 treatment of both cell lines resulted in the formation of autophagosomes, in the conversion of microtubule-associated protein 1 light chain 3 (LC3), and in down-regulation of the Akt-mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (S6K) signaling cascade. Thus, pharmacologic inhibition of CK2 by CX-4945 induced autophagic cell death in human cancer cells by down-regulating Akt-mTOR-S6K. These results suggest that autophagy-inducing agents have potential as anti-cancer drugs.

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • 남기연;정동훈;최재원;이윤성;이평우
    • 대한바이러스학회지
    • /
    • 제29권4호
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Changes in Differentially Expressed Genes in the Liver of Oryzias latipes by Binary Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons

  • Oh, Jeong-Hwan;Moon, Hyo-Bang;Choe, Eun-Sang
    • 환경생물
    • /
    • 제27권4호
    • /
    • pp.391-396
    • /
    • 2009
  • The biological effects of carcinogenic polycyclic aromatic hydrocarbons (cPAHs) including benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DBA), benzo[a]anthracene (BaA), benzo[b] fluoranthene (BbF), benzo[k]fluoranthene (BkF), and indeno[1,2,3-c, d]pyrene (InP) on transcriptomic changes were determined in the liver of Oryzias latipes. Differentially expressed genes (DEGs) by binary exposure to cPAHs (BaP+BaA, BaP+BbF, BaP+BkF, BaP+DbA, BaP+InP) were screened by annealing control primers-based polymerase chain reaction followed by sequence analysis and BLAST searching. The results showed that four DEGs were commonly expressed by cPAHs and they were identified as ribosomal protein S4, coagulation factor II, elongation factor 1 beta, and a predicted protein similar to human immunodeficiency virus type I enhancer binding protein 3. This finding suggests that binary exposure to cPAHs interferes protein synthesis required for fundamental liver functions in fish.

Mycoplasma pneumoniae의 분리 및 항생제 감수성 검사(III) (Isolation of Mycoplasma pneumoniae and Antimicrobial Susceptibilities of the Isolates(III))

  • 장명웅;김광혁;박인달;송갑영;김성원;이은영;김문찬;조명훈;김규언;최충언;박선영;조현장
    • 생명과학회지
    • /
    • 제15권3호
    • /
    • pp.479-485
    • /
    • 2005
  • 2002년 2월부터 2005년 2월까지 성인 및 소아 호홉기질환자 994명의 상기도 도말물에서 M. pneumoniae 균주를 분리하고, 분리 균주의 ciprofloxacin, ofloxacin, minecline, tetracycline, sparfloxacin, josamycin, erythromycin에 대한 감수성 검사를 실시하였으며, 분리된 균주의 235 rRNA domain II와 V에서 erythromycin저항성 변이가 일어났는가를 PCR과 유전자 염기서열분석으로 erythromycin에 감수성인 M. pneumonine균주의 염기서열과 비교분석하여 확인하였다. 호흡기질환자에서 M. pneumoniae의 분리율은 123/994$(12.4\%)$이었으며, 분리된 M. pneumoniae 균주의 minocycline, sparfloxacin, tetracycline, ciprofloxacin, ofloxacin, josamycin, erythromycin MIC 범위는 각각 $0.015\~0.25,\;0.06\~0.5,\;0.06\~0.5,\;0.25\~0.5,\;0.25\~0.5,\;0.015\~8.0,\;0.015\~8.0{\mu}m$이었다. 분리 동정된 M. pneumoniae 균주 중에서 erythromycin에 저항성인 균주가 60주$(48.8\%)$였으며, 모두가 ribosomal protein L4 영역과 23S rRNA domain V에 내성변이가 일어났으며, 이 중 2균주는 23S rRNA domain II에도 변이가 일어난 균주도 있었다. 국내에서 분리되는 M. pneumoniae균주의 $48\%$가 erytomycin에 저항성인 균주이므로 앞으로 이 균에 의한 폐렴의 치료에 주의가 요구된다.

Proteome Analysis of Bovine Longissimus dorsi Muscle Associated with the Marbling Score

  • Shen, Y.N.;Kim, S.H.;Yoon, D.H.;Lee, H.G.;Kang, H.S.;Seo, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권8호
    • /
    • pp.1083-1088
    • /
    • 2012
  • The breeding value of marbling score in skeletal muscle is an important factor for evaluating beef quality. In the present study, we investigated proteins associated with the breeding value of the marbling score for bovine sirloin to select potential biomarkers to improve meat quality through comparative proteomic analysis. Proteins isolated from muscle were separated by two-dimensional gel electrophoresis. After analyzing images of the stained gel, seven protein spots for the high marbling score group were identified corresponding to changes in expression that were at least two-fold compared to the low marbling score group. Four spots with increased intensities in the high marbling score group were identified as phosphoglycerate kinase 1, triosephophate isomerase, acidic ribosomal phosphoprotein PO, and capping protein (actin filament) Z-line alpha 2. Spots with decreased intensities in the high marbling score group compared to the low score group were identified as 14-3-3 epsilon, carbonic anhydrase II, and myosin light chain 1. Expression of myosin light chain 1 and carbonic anhydrase 2 was confirmed by Western blotting. Taken together, these data could help improve the economic performance of cattle and provide useful information about the underlying the function of bovine skeletal muscle.

S-Adenosylmethionine decarboxylase 유전자의 upstream open reading frame이 in vivo에서 translational inhibitor 로서의 작용 기작 (Action mechanism of upstream open reading frame from S-adenosylmethionine decarboxylase gene as a in vivo translational inhibitor)

  • 최유진;박기영
    • Journal of Plant Biotechnology
    • /
    • 제38권1호
    • /
    • pp.87-93
    • /
    • 2011
  • SAMDC는 폴리아민 생합성 과정에서 주효소로 작용하며 항상성을 유지하기위해 정교하게 조절된다. 카네이션 SAMDC 유전자는 5'-leader sequence에 54개 아미노산으로 구성된 small uORF가 존재한다. Translation 과정을 조절하는 uORF의 작용기작을 연구하기 위하여 35S 프로모터에 SAMDC 유전자의 uORF 부위와 GUS 유전자를 재조합한 형질전환 담배 식물체를 이용하였다. 본 실험에서는 SAMDC uORF 염기서열 혹은 SAMDC uORF 단백질에 의해서 downstream GUS ORF의 translation이 억제되었다. 특히 translation 억제는 개시코돈이 point-mutation된 construct에서 효과적으로 이루어졌다. 따라서 이러한 결과는 ribosomal stalling이 translation 억제 과정에 관여한 것으로 사료된다. 개시 코돈과 종결코돈을 가진 SAMDC uORF의 아미노산 서열을 frame shift 시키면 GUS 활성이 증가하였는데 이는 translation inhibitor로서 작용할 때 아미노산 서열이 중요하다는 것을 의미하며, 결국은 SAMDC uORF의 단백질 구조가 중요하게 작용할 가능성을 제시한다. 또한 유식물과 담배 꽃 등의 in vivo 상에서도 GUS 발현을 조직화학적으로 분석했을 때 small uORF가 존재할 경우 GUS 염색이 크게 저하되었지만, 개시코돈이나 혹은 종결코돈이 제거되도록 point-mutation 시킨 construct가 도입된 형질전환식물체에서는 SAMDC uORF의 억제효과가 크게 완화 되었다. 또한 가장 중요한 관찰 결과로는 small uORF 염기서열로부터 in vitro 시스템에서 5.7 kDa의 단백질이 실제적으로 합성되었음을 관찰하였다. 폴리아민 처리 후 GUS 단백질이 억제된 결과는 uORF로부터 합성된 단백질이 폴리아민 뿐 만 아니라 translation 과정에 관여하는 다른 요소들과 상호작용을 이루어 조절될 수 있음을 암시한다.