• Title/Summary/Keyword: ribosomal protein

Search Result 257, Processing Time 0.019 seconds

Metabolic Pathways of 1309 Prokaryotic Species in Relation to COGs (COG pathways에서 원핵생물 1,309종의 대사경로)

  • Lee, Dong-Geun;Kim, Ju-Hui;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Metabolism is essential for survival and reproduction, and there is a metabolic pathways entry in the clusters of orthologous groups of proteins (COGs) database, updated in 2020. In this study, the metabolic pathways of 1309 prokaryotes were analyzed using COGs. There were 822 COGs associated with 63 metabolic pathways, and the mean for each taxon was between 200.50 (mollicutes) and 527.07 (cyanobacteria) COGs. The metabolic pathway composition ratio (MPCR) was defined as the number of COGs present in one genome in relation to the total number of COGs constituting each metabolic pathway, and the number of pathways with 100% MPCR ranged from 0 to 26 in each prokaryote. Among 1309 species, the 100% MPCR pathways included murein biosynthesis associated with cell wall synthesis (922 species); glycine cleavage (918); and ribosomal 30S subunit synthesis (903). The metabolic pathways with 0% MPCR were those involving photosystem I (1263 species); archaea/vacuolar-type ATP synthase (1028); and Na+-translocation NADH dehydrogenase (976). Depending on the prokaryote, three to 49 metabolic pathways could not be performed at all. The sequence of most highly conserved metabolic pathways was ribosome 30S subunit synthesis (96.1% of 1309 species); murein biosynthesis (86.8%); arginine biosynthesis (80.4%); serine biosynthesis (80.3%); and aminoacyl-tRNA synthesis (82.2%). Protein and cell wall synthesis have been shown to be important metabolic pathways in prokaryotes, and the results of this study of COGs related to such pathways can be utilized in, for example, the development of antibiotics and artificial cells.

The Complete Mitochondrial Genome and Molecular Phylogeny of the Flathead Platycephalus cultellatus Richardson, 1846 from Vietnam (Teleostei; Scorpaeniformes) (베트남 Platycephalus cultellatus Richardson, 1846 (Teleostei; Scorpaeniformes)의 전장 미토콘드리아 유전체와 분자계통)

  • Tran, Biet Thanh;Nguyen, Tu Van;Choi, Youn Hee;Kim, Keun-Yong;Heo, Jung Soo;Kim, Keun-Sik;Ryu, Jung-Hwa;Kim, Kyeong Mi;Yoon, Moongeun
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.217-225
    • /
    • 2021
  • The family Platycephalidae is a taxonomic group of economically important demersal flathead fishes that predominantly occupy tropical or temperate estuaries and coastal environments of the Indo-Pacific oceans and the Mediterranean Sea. In this study, we for the first time analyzed the complete mitochondrial genome (mitogenome) of the flathead Platycephalus cultellatus Richardson, 1846 from Vietnam by Next Generation Sequencing method. Its mitogenome was 16,641 bp in total length, comprising 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. The gene composition and order of the mitogenome were identical to those of typical vertebrates. The phylogenetic trees were reconstructed based on the concatenated nucleotide sequence matrix of 13 PCGs and the partial sequence of a DNA barcoding marker, cox1 in order to determine its molecular phylogenetic position among the order Scorpaeniformes. The phylogenetic result revealed that P. cultellatus formed a monophyletic group with species belonging to the same family and consistently clustered with one nominal species, P. indicus, and two Platycephalus sp. specimens. Besides, the cox1 tree confirmed the taxonomic validity of our specimen by forming a monophyletic clade with its conspecific specimens. The mitogenome of P. cultellatus analyzed in this study will contribute valuable information for further study on taxonomy and phylogeny of flatheads.

Complete Mitochondrial Genome Sequences of Korean Phytophthora infestans Isolates and Comparative Analysis of Mitochondrial Haplotypes

  • Seo, Jin-Hee;Choi, Jang-Gyu;Park, Hyun-Jin;Cho, Ji-Hong;Park, Young-Eun;Im, Ju-Sung;Hong, Su-Young;Cho, Kwang-Soo
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.541-549
    • /
    • 2022
  • Potato late blight caused by Phytophthora infestans is a destructive disease in Korea. To elucidate the genomic variation of the mitochondrial (mt) genome, we assembled its complete mt genome and compared its sequence among different haplotypes. The mt genome sequences of four Korean P. infestans isolates were revealed by Illumina HiSeq. The size of the circular mt genome of the four major genotypes, KR_1_A1, KR_2_A2, SIB-1, and US-11, was 39,872, 39,836, 39,872, and 39,840 bp, respectively. All genotypes contained the same 61 genes in the same order, comprising two RNA-encoding genes, 16 ribosomal genes, 25 transfer RNA, 17 genes encoding electron transport and ATP synthesis, 11 open reading frames of unknown function, and one protein import-related gene, tatC. The coding region comprised 91% of the genome, and GC content was 22.3%. The haplotypes were further analyzed based on sequence polymorphism at two hypervariable regions (HVRi), carrying a 2 kb insertion/deletion sequence, and HVRii, carrying 36 bp variable number tandem repeats (VNTRs). All four genotypes carried the 2 kb insertion/deletion sequence in HVRi, whereas HVRii had two VNTRs in KR_1_A1 and SIB-1 but three VNTRs in US-11 and KR_2_A2. Minimal spanning network and phylogenetic analysis based on 5,814 bp of mtDNA sequences from five loci, KR_1_A1 and SIB-1 were classified as IIa-6 haplotype, and isolates KR_1_A2 and US-11 as haplotypes IIa-5 and IIb-2, respectively. mtDNA sequences of KR_1_A1 and SIB-1 shared 100% sequence identity, and both were 99.9% similar to those of KR_2_A2 and US-11.

Mutation of rpsL Gene in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea (국내에서 분리된 Streptomycin 저항성 Pseudomonas syringae pv. actinidiae Biovar 3 균주에서 rpsL 유전자의 돌연변이)

  • Lee, Young Sun;Kim, Gyoung Hee;Koh, Young Jin;Jung, Jae Sung
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.26-31
    • /
    • 2022
  • Pseudomonas syringae pv. actinidiae (Psa) is the causal agent responsible for the bacterial canker disease of kiwifruit plants. Psa strains are divided into five different biovars based on genetic and biochemical characteristics. Among them, biovar 2 and 3 strains of Psa were isolated and have been causing widespread damages in Korea. One of the most effective ways to control Psa is to use an antibiotic such as streptomycin. However, Psa strains resistant to this antibiotic were isolated in Korea, and an earlier study revealed that the resistance in the biovar 2 is associated with strA-strB genes. This study aimed to determine the molecular resistance mechanism of Psa biovar 3 strains to streptomycin. Sequencing the rpsL gene encoding ribosomal protein S12 from three streptomycin-resistant strains screened in the laboratory revealed that a spontaneous mutation occurred either at codon 43 or 88. Meanwhile, in four streptomycin-resistant strains of Psa biovar 3 isolated from two kiwifruit orchards, a single nucleotide in codon 43 of the rpsL, which is AAA in streptomycin-sensitive strain, was substituted for AGA causing an amino acid change from lysine to arginine. The resistant mechanism in all biovar 3 strains obtained in Korea was identified as a mutation of the rpsL gene.

A Study on the Effects of Sirtuin 1 on Dendritic Outgrowth and Spine Formation and Mechanism in Neuronal Cells (신경세포에서 sirtuin 1이 수상돌기 성장과 가시형성에 미치는 영향 및 기전에 관한 연구)

  • Seo, Mi Kyoung;Kim, Hye Kyeong;Baek, Song Young;Lee, Jung Goo;Urm, Sang-Hwa;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.806-817
    • /
    • 2021
  • Increasing evidence suggests that depression is associated with impairments in neural plasticity. Sirtuin 1 plays an important role in neural plasticity, and the activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling is known to improve neural plasticity. In this study, we aimed to determine whether sirtuin 1 affects dendrite outgrowth and spine formation through mTORC1 signaling. Resveratrol (sirtuin 1 activator; 1 and 10 μM) and sirtinol (sirtuin 1 inhibitor; 1 and 10 μM) were treated in primary cortical culture with and without dexamethasone (500 μM). Levels of sirtuin 1, phospho-extracellular signal regulated protein kinase 1/2 (ERK1/2), phospho-mTORC1, and phospho-p70 ribosomal protein S6 kinase (p70S6K) were evaluated using Western blot analysis. Dendritic outgrowth and spine density were assessed using immunostaining. Resveratrol significantly increased levels of sirtuin 1 expression and phosphorylation of ERK1/2 (a downstream target of sirtuin 1), mTORC1, and p70S6K (a downstream target of mTORC1) in a concentration-dependent manner under dexamethasone conditions. Resveratrol also significantly increased dendritic outgrowth and spine density. Conversely, sirtinol significantly decreased levels of sirtuin 1 expression and phosphorylation of ERK1/2, mTORC1, and p70S6K in a concentration-dependent manner under normal conditions. Moreover, sirtinol significantly decreased dendritic outgrowth and spine density. Consistent with the results of sirtinol, sirtuin 1 knockdown using sirtuin 1 siRNA transfection significantly decreased dendritic outgrowth and spine density as well as phosphorylation levels of ERK1/2 and mTORC1. These data suggest that sirtuin 1 enhances dendritic outgrowth and spine density by activating mTORC1 signaling.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Complete genome sequence of Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) isolated from healthy Korean feces (건강한 한국인 분변으로부터 분리된 Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) 균주의 유전체 염기서열 초안)

  • Kim, Ji-Sun;Kang, Se Won;Han, Kook-Il;Lee, Keun Chul;Eom, Mi Kyung;Suh, Min Kuk;Kim, Han Sol;Lee, Ju Huck;Park, Seung-Hwan;Park, Jam-Eon;Oh, Byeong Seob;Yu, Seung Yeob;Choi, Seung-Hyeon;Ryu, Seoung Woo;Lee, Dong Ho;Yoon, Hyuk;Kim, Byung-Yong;Lee, Je Hee;Lee, Jung-Sook
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.289-292
    • /
    • 2019
  • Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) belonging to the class Clostridia in phylum Firmicutes, was isolated from a stool sample of a healthy Korean. Herein, we report the complete genome sequence of strain KGMB03038 analyzed using the PacBio Sequel platform. The genome comprises of 3,334,474 bp with G + C content of 47.8%, which includes 3,099 predicted protein-coding genes, 12 ribosomal RNAs, 54 transfer RNAs, and 4 ncRNAs. Genome analysis revealed that strain KGMB03038 possesses a number of genes involved in hydrolysis of carbohydrates, including mono-, di-, and oligo-saccharides, and biosynthesis of various amino acids.