• Title/Summary/Keyword: ribosomal protein

Search Result 254, Processing Time 0.029 seconds

Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): genome characterization and phylogenetic analysis

  • Zhong, Liqiang;Wang, Minghua;Li, Daming;Tang, Shengkai;Zhang, Tongqing;Bian, Wenji;Chen, Xiaohui
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1137-1148
    • /
    • 2018
  • Freshwater gobies Rhinogobius cliffordpopei and R. giurinus are invasive species with particular concern because they have become dominant and were fierce competitors in the invaded areas in Yunnan-Guizhou Plateau (southwest of China). Information about genetic characteristics of R. giurinus have been published, but there were still no relevant reports about R. cliffordpopei. In present study, the complete mitochondrial genome of R. cliffordpopei was determined, which was 16,511 bp in length with A+T content of 51.1%, consisting of 13 protein-coding genes, 22 tRNAs, 2 ribosomal RNAs, and a control region. The gene composition and the structural arrangement of the R. cliffordpopei complete mtDNA were identical to most of other teleosts. Phylogenetic analyses placed R. cliffordpopei in a well-supported monophyletic cluster with other Rhinogobius fish. But the phylogenetic relationship between genus Rhinogobius and Tridentiger remained to be resolved.

Complete mitochondrial genome of Nyctalus aviator and phylogenetic analysis of the family Vespertilionidae

  • Lee, Seon-Mi;Lee, Mu-Yeong;Kim, Sun-sook;Kim, Hee-Jong;Jeon, Hye Sook;An, Junghwa
    • Journal of Species Research
    • /
    • v.8 no.3
    • /
    • pp.313-317
    • /
    • 2019
  • Bats influence overall ecosystem health by regulating species diversity and being a major source of zoonotic viruses. Hence, there is a need to elucidate their migration, population structure, and phylogenetic relationship. The complete mitochondrial genome is widely used for studying the genome-level characteristics and phylogenetic relationship of various animals due to its high mutation rate, simple structure, and maternal inheritance. In this study, we determined the complete mitogenome sequence of the bird-like noctule (Nyctalus aviator) by Illumina next-generation sequencing. The sequences obtained were used to reconstruct a phylogenic tree of Vespertilionidae to elucidate the phylogenetic relationship among its members. The mitogenome of N. aviator is 16,863-bp long with a typical vertebrate gene arrangement, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 putative control region. Overall, the nucleotide composition is as follows: 32.3% A, 24.2% C, 14.3% G, and 29.2% T, with a slight AT bias (61.5%). The base composition of the 13 PCGs is as follows: 30.3% A, 13.4% G, 31.0% T, and 25.2% C. The phylogenetic analysis, based on 13 concatenated PCG sequences, infers that N. aviator is closely related to N. noctula with a high bootstrap value (100%).

Andrographolide Promotes the Stemness of Epidermal Cells through the Extracellular Signal-regulated Kinase (ERK) Pathway (Andrographolide의 Extracellular Signal-regulated Kinase Pathway (ERK)를 통한 상피 세포 줄기세포능 향상)

  • You, Jiyoung;Roh, Kyung-Baeg;Shin, Seoungwoo;Park, Deokhoon;Jung, Eunsun
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • Andrographolide, the main compound of Andrographis paniculata (A. paniculata), shows various biological properties including anti-viral, anti-inflammatory, anti-diabetic, and hepatoprotective effects. Our previous study has shown that A. paniculata extract exerts antiaging effects by activation of stemness in epidermal stem cells (EpSCs). In this study, we investigated the effect of andrographolide as a main compound of A. paniculata on EpSCs and its mechnism of action using several in vitro assays. Andrographolide increased the proliferation of EpSCs and induced cell cycle progression. Additionally, andrographolide increased VEGF production and the expression of stem cell markers integrin ${\beta}1$ and p63. Furthermore, phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), S6 ribosomal protein (S6RP) and Akt were increased by andrographolide. Taken together, these results indicate that andrographolide-induced proliferation of EpSCs is mediated by the ERK1/2, Akt-dependent pathway with increased production of VEGF and upregulated stemness through integrin ${\beta}1$ and p63.

High quality genome sequence of Treponema phagedenis KS1 isolated from bovine digital dermatitis

  • Espiritu, Hector M.;Mamuad, Lovelia L.;Jin, Su-jeong;Kim, Seon-ho;Lee, Sang-suk;Cho, Yong-il
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.948-951
    • /
    • 2020
  • Treponema phagedenis KS1, a fastidious anaerobe, was isolated from a bovine digital dermatitis (BDD)-infected dairy cattle in Chungnam, Korea. Initial data indicated that T. phagedenis KS1 exhibited putative virulent phenotypic characteristics. This study reports the whole genome assembly and annotation of T. phagedenis KS1 (KCTC14157BP) to assist in the identification of putative pathogenicity related factors. The whole genome of T. phagedenis KS1 was sequenced using PacBio RSII and Illumina HiSeqXTen platforms. The assembled T. phagedenis KS1 genome comprises 16 contigs with a total size of 3,769,422 bp and an overall guanine-cytosine (GC) content of 40.03%. Annotation revealed 3,460 protein-coding genes, as well as 49 transfer RNA- and 6 ribosomal RNA-coding genes. The results of this study provide insight into the pathogenicity of T. phagedenis KS1.

Analysis of Complete Mitochondrial Genomes of Three Gadus chalcogrammus Specimens (Teleostei; Gadiformes; Gadidae) from Korea and Japan

  • Lee, Chung Il;Jung, Hae Kun;Yoo, Hae-Kyun;Kim, Hyun-Woo;Park, Hyun Je;Kang, Chang-Keun;Shim, Jeong Hee;Kim, Keun-Yong;Park, Joo Myun;Yoon, Moongeun
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.52-54
    • /
    • 2022
  • Mitochondrial genomes of three specimens of Gadus chalcogrammus Pallas 1,814 from Korea and Japan were completely analyzed by the primer walking method. They were 16,570~16,571 bp in length, each comprising 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. Their gene orders were identical to those of conspecific specimens, but exhibited unique haplotypes. In the phylogenetic tree, the juvenile Korean and adult Japanese specimens were separated from the dominant clade composed of specimens from Japan, Korea, the Bering Sea, and the Arctic, including the adult Korean specimen.

Phosphorylation of REPS1 at Ser709 by RSK attenuates the recycling of transferrin receptor

  • Kim, Seong Heon;Cho, Jin-hwa;Park, Bi-Oh;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo;Kim, Sunhong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.272-277
    • /
    • 2021
  • RalBP1 associated EPS domain containing 1 (REPS1) is conserved from Drosophila to humans and implicated in the endocytic system. However, an exact role of REPS1 remains largely unknown. Here, we demonstrated that mitogen activated protein kinase kinase (MEK)-p90 ribosomal S6 Kinase (RSK) signaling pathway directly phosphorylated REPS1 at Ser709 upon stimulation by epidermal growth factor (EGF) and amino acid. While REPS2 is known to be involved in the endocytosis of EGF receptor (EGFR), REPS1 knockout (KO) cells did not show any defect in the endocytosis of EGFR. However, in the REPS1 KO cells and the KO cells reconstituted with a non-phosphorylatable REPS1 (REPS1 S709A), the recycling of transferrin receptor (TfR) was attenuated compared to the cells reconstituted with wild type REPS1. Collectively, we suggested that the phosphorylation of REPS1 at S709 by RSK may have a role of the trafficking of TfR.

Characteristics of the complete plastid genome sequence of Lindera angustifolia (Lauraceae) in the geographically separated northern edge

  • GANTSETSEG, Amarsanaa;KIM, Jung-Hyun;HYUN, Chang Woo;HAN, Eun-Kyeong;LEE, Jung-Hyun
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.2
    • /
    • pp.114-117
    • /
    • 2022
  • Lindera angustifolia is mainly distributed in the temperate climate zone of China but shows an extraordinary distribution, disjunctively isolated on the western coastal islands of Korea. We therefore present the complete chloroplast genome of Korean L. angustifolia. The complete plastome was 152,836 bp in length, with an overall GC content of 39.2%. A large single copy (93,726 bp) and a small single copy (18,946 bp) of the genome were separated by a pair of inverted repeats (20,082 bp). The genome consists of 125 genes, including 81 protein-coding, eight ribosomal RNA, and 36 transfer RNA genes. While five RNA editing genes (psbL, rpl2, ndhB×2, and ndhD) were identified in L. angustifolia from China, the "ndhD" gene was not recognized as an RNA editing site in the corresponding Korean individual. A phylogenetic analysis revealed that Korean L. angustifolia is most closely related to the Chinese L. angustifolia with strong bootstrap support, forming a sister group of L. glauca.

Complete Mitochondrial Genome and Phylogenetic Analysis for the Korean Field Mouse Apodemus peninsulae Found on Baengnyeong Island in South Korea

  • Jung A Kim;Hye Sook Jeon;Seung Min Lee;Hong Seomun;Junghwa An
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.69-71
    • /
    • 2023
  • The Korean field mouse, Apodemus peninsulae mitochondrial genome has previously been reported for mice obtained from mainland Korea and China. In this investigation the complete mitochondrial genome sequence for a mouse obtained from Baengnyeong Island (BI) in South Korea was determined using high-throughput whole-genome sequencing for the first time. The circular genome was determined to be 16,268 bp in length. It was found to be composed of a typical complement gene that encodes 13 protein subunits of enzymes involved in oxidative phosphorylation, two ribosomal RNAs, 22 transfer RNAs, and one control region. Phylogenetic analysis involved 13 amino acid sequences and demonstrated that the A. peninsulae genome from BI was more closely grouped with two Korean samples (HQ660074 and JN546584) than the Chinese (KP671850) sample. This study verified the evolutionary status of A. peninsulae inhabiting the BI at the molecular level, and could be a significant supplement to the genetic background.

A Novel Inhibitor of Translation Initiation Factor eIF5B in Saccharomyces cerevisiae

  • Ah-Ra Goh;Yi-Na Kim;Jae Hyeun Oh;Sang Ki Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1348-1355
    • /
    • 2024
  • The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.

Complete Genome Sequence of Paraburkholderia phenoliruptrix T36S-14, a Plant Growth Promoting Bacterium on Tomato (Solanum lycopersicum L.) Seedlings (토마토생장촉진효과가있는 Paraburkholderia phenoliruptrix T36S-14 균주의유전체염기서열)

  • Jiwon Kim;Yong Ju Jin;Min Ju Lee;Dong Suk Park;Jaekyeong Song
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.195-199
    • /
    • 2024
  • Paraburkholderia phenoliruptrix T36S-14, identified as a potential plant growth-promoting bacterium, was isolated from the core microbiome of tomato rhizosphere soil. When assessed for its growth promotion, Strain T36S-14 demonstrated a notable 20% increase in the fresh weight of tomato seedlings. The strain possesses two circular chromosomes, one of 4,104,520 base pair (bp) (CP119873) and the other of 3,258,072 bp (CP119874), both exhibiting G+C contents of 63.5% and 62.7%, respectively. The chromosome comprises 6,319 protein-coding sequences, 65 transfer RNA genes, and 18 ribosomal RNA genes (5S: 6, 16S: 6, and 23S: 6). Additionally, P. phenoliruptrix T36S-14 produces siderophores that promote plant growth.