• 제목/요약/키워드: ribosomal DNA.

검색결과 650건 처리시간 0.023초

Race- and Isolate-specific Molecular Marker Development through Genome-Realignment Enables Detection of Korean Plasmodiophora brassicae Isolates, Causal agents of Clubroot Disease

  • Jeong, Ji -Yun;Robin, Arif Hasan Khan;Natarajan, Sathishkumar;Laila, Rawnak;Kim, Hoy-Taek;Park, Jong-In;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • 제34권6호
    • /
    • pp.506-513
    • /
    • 2018
  • Clubroot is one of the most economically important diseases of the Brassicaceae family. Clubroot disease is caused by the obligate parasite Plasmodiophora brassicae, which is difficult to study because it is nonculturable in the laboratory and its races are genetically variable worldwide. In Korea, there are at least five races that belongs to four pathotype groups. A recent study conducted in Korea attempted to develop molecular markers based on ribosomal DNA polymorphism to detect P. brassicae isolates, but none of those markers was either race-specific or pathotype-specific. Our current study aimed to develop race- and isolate-specific markers by exploiting genomic sequence variations. A total of 119 markers were developed based on unique variation exists in genomic sequences of each of the races. Only 12 markers were able to detect P. brassicae strains of each isolate or race. Ycheon14 markers was specific to isolates of race 2, Yeoncheon and Hoengseong. Ycheon9 and Ycheon10 markers were specific to Yeoncheon isolate (race 2, pathotype 3), ZJ1-3, ZJ1-4 and ZJ1-5 markers were specific to Haenam2 (race 4) isolate, ZJ1-35, ZJ1-40, ZJ1-41 and ZJ1-49 markers were specific to Hoengseong isolate and ZJ1-56 and ZJ1-64 markers were specific to Pyeongchang isolate (race 4, pathotype 3). The PCR-based sequence characterized amplified region (SCAR) markers developed in this study are able to detect five Korean isolates of P. brassicae. These markers can be utilized in identifying four Korean P. brassicae isolates from different regions. Additional effort is required to develop race- and isolate-specific markers for the remaining Korean isolates.

Immunization with Brucella abortus recombinant proteins protects BALB/c mice from Brucella abortus 544 infection

  • Arayan, Lauren Togonon;Tran, Xuan Ngoc Huy;Reyes, Alisha Wehdnesday Bernardo;Huynh, Tan Hop;Vu, Hai Son;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Preventive Veterinary Medicine
    • /
    • 제42권4호
    • /
    • pp.157-162
    • /
    • 2018
  • This study evaluated the protective effects of a combination of eight B. abortus recombinant proteins that were cloned and expressed into a pMal vector system and $DH5{\alpha}$: nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12), malate dehydrogenase (rMDH), DNA starvation/stationary phase protection protein (rDps), elongation factor (rTsf), arginase (rRocF), superoxide dismutase (rSodC), and riboflavin synthase subunit beta (rRibH). The proteins were induced, purified, and administered intraperitoneally into BALB/c mice. The mice were immunized three times at weeks 0, 2, and 5 and then infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544 one week after the last immunization. The spleens were collected and the bacterial burden was evaluated at four weeks post-infection. The results showed that this combination produced a significant reduction of the bacterial burden in the spleen with a log reduction of 1.01 compared to the PBS group. Cytokine analysis revealed induction of the cell-mediated immune response in that TNF (tumor necrosis factor) and proinflammatory cytokines IL-6 (Interleukin 6) and MCP-1 (macrophage chemoattractant protein-1) were elevated significantly. In summary, vaccination with a combination of eight different proteins induced a significant protective effect indicative of a cell mediated immune response.

A Duplex PCR Assay for Rapid Detection of Phytophthora nicotianae and Thielaviopsis basicola

  • Liu, Na;Jiang, Shijun;Feng, Songli;Shang, Wenyan;Xing, Guozhen;Qiu, Rui;Li, Chengjun;Li, Shujun;Zheng, Wenming
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.172-177
    • /
    • 2019
  • A duplex PCR method was developed for simultaneous detection and identification of tobacco root rot pathogens Phytophthora nicotianae and Thielaviopsis basicola. The specific primers for P. nicotianae were developed based on its internal transcribed spacer (ITS) regions of ribosomal gene, ras gene and hgd gene, while the specific primers for T. basicola were designed based on its ITS regions and ${\beta}$-tubulin gene. The specificity of the primers was determined using isolates of P. nicotianae, T. basicola and control samples. The results showed that the target pathogens could be detected from diseased tobacco plants by a combination of the specific primers. The sensitivity limitation was $100fg/{\mu}l$ of pure genomic DNA of the pathogens. This new assay can be applied to screen out target pathogens rapidly and reliably in one PCR and will be an important tool for the identification and precise early prediction of these two destructive diseases of tobacco.

Identification and classification of pathogenic Fusarium isolates from cultivated Korean cucurbit plants

  • Walftor Bin Dumin;You-Kyoung Han;Jong-Han Park;Yeoung-Seuk Bae;Chang-Gi Back
    • 농업과학연구
    • /
    • 제49권1호
    • /
    • pp.121-128
    • /
    • 2022
  • Fusarium wilt disease caused by Fusarium species is a major problem affecting cultivated cucurbit plants worldwide. Fusarium species are well-known soil-borne pathogenic fungi that cause Fusarium wilt disease in several cucurbit plants. In this study, we aimed to identify and classify pathogenic Fusarium species from cultivated Korean cucurbit plants, specifically watermelon and cucumber. Thirty-six Fusarium isolates from different regions of Korea were obtained from the National Institute of Horticulture and Herbal Science Germplasm collection. Each isolate was morphologically and molecularly identified using an internal transcribed spacer of ribosomal DNA, elongation factor-1α, and the beta-tubulin gene marker sequence. Fusarium species that infect the cucurbit plant family could be divided into three groups: Fusarium oxysporum (F. oxysporum), Fusarium solani (F. solani), and Fusarium equiseti (F. equieti). Among the 36 isolates examined, six were non-pathogenic (F. equiseti: 15-127, F. oxysporum: 14-129, 17-557, 17-559, 18-369, F. solani: 12-155), whereas 30 isolates were pathogenic. Five of the F. solani isolates (11-117, 14-130, 17-554, 17-555, 17-556) were found to be highly pathogenic to both watermelon and cucumber plants, posing a great threat to cucurbit production in Korea. The identification of several isolates of F. equiseti and F. oxysporum, which are both highly pathogenic to bottle gourd, may indicate waning resistance to Fusarium species infection.

Unveiling mesophotic diversity in Hawai'i: two new species in the genera Halopeltis and Leptofauchea (Rhodymeniales, Rhodophyta)

  • Erika A., Alvarado;Feresa P., Cabrera;Monica O., Paiano;James T., Fumo;Heather L., Spalding;Celia M., Smith;Jason C., Leonard;Keolohilani H., Lopes Jr.;Randall K., Kosaki;Alison R., Sherwood
    • ALGAE
    • /
    • 제37권4호
    • /
    • pp.249-264
    • /
    • 2022
  • Two genera of the Rhodymeniales, Halopeltis and Leptofauchea, are here reported for the first time from the Hawaiian Islands and represent the deepest records for both genera. Molecular phylogenetic analyses of cytochrome oxidase subunit I (COI), rbcL, and large subunit ribosomal DNA (LSU) sequences for Hawaiian specimens of Leptofauchea revealed one well-supported clade of Hawaiian specimens and three additional lineages. One of these clades is described here as Leptofauchea huawelau sp. nov., and is thus far known only from mesophotic depths at Penguin Bank in the Main Hawaiian Islands. L. huawelau sp. nov. is up to 21 cm, and is the largest known species. An additional lineage identified in the LSU and rbcL analyses corresponds to the recently described L. lucida from Western Australia, and is a new record for Hawai'i. Hawaiian Halopeltis formed a well-supported clade along with H. adnata from Korea, the recently described H. tanakae from mesophotic depths in Japan, and H. willisii from North Carolina, and is here described as Halopeltis nuahilihilia sp. nov. H. nuahilihilia sp. nov. has a distinctive morphology of narrow vegetative axes that harbor constrictions along their length. The current distribution of H. nuahilihilia includes mesophotic depths around W. Maui, W. Moloka'i, and the island of Hawai'i in the Main Hawaiian Islands. Few reproductive characters were observed because of the small number of specimens available; however, both species are distinct based on phylogeny and morphology. These descriptions further emphasize the Hawaiian mesophotic zone as a location harboring many undescribed species of marine macroalgae.

Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability

  • Dongkeun Park;Youngim Yu;Ji-hyung Kim;Jongbin Lee;Jongmin Park;Kido Hong;Jeong-Kon Seo;Chunghun Lim;Kyung-Tai Min
    • Molecules and Cells
    • /
    • 제46권6호
    • /
    • pp.374-386
    • /
    • 2023
  • Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.

Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae)

  • Jin Hee Ok;Hae Jin Jeong;An Suk Lim;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • 제38권1호
    • /
    • pp.39-55
    • /
    • 2023
  • Exploring mixotrophy of dinoflagellate species is critical to understanding red-tide dynamics and dinoflagellate evolution. Some species in the dinoflagellate genus Karenia have caused harmful algal blooms. Among 10 Karenia species, the mixotrophic ability of only two species, Karenia mikimotoi and Karenia brevis, has been investigated. These species have been revealed to be mixotrophic; however, the mixotrophy of the other species should be explored. Moreover, although K. mikimotoi was previously known to be mixotrophic, only a few potential prey species have been tested. We explored the mixotrophic ability of Karenia bicuneiformis, Karenia papilionacea, and Karenia selliformis and the prey spectrum of K. mikimotoi by incubating them with 16 potential prey species, including a cyanobacterium, diatom, prymnesiophyte, prasinophyte, raphidophyte, cryptophytes, and dinoflagellates. Cells of K. bicuneiformis, K. papilionacea, and K. selliformis did not feed on any tested potential prey species, indicating a lack of mixotrophy. The present study newly discovered that K. mikimotoi was able to feed on the common cryptophyte Teleaulax amphioxeia. The phylogenetic tree based on the large subunit ribosomal DNA showed that the mixotrophic species K. mikimotoi and K. brevis belonged to the same clade, but K. bicuneiformis, K. papilionacea, and K. selliformis were divided into different clades. Therefore, the presence or lack of a mixotrophic ability in this genus may be partially related to genetic characterizations. The results of this study suggest that Karenia species are not all mixotrophic, varying from the results of previous studies.

Re-identification of Colletotrichum acutatum Species Complex in Korea and Their Host Plants

  • Le Dinh Thao;Hyorim Choi;Yunhee Choi;Anbazhagan Mageswari;Daseul Lee;Seung-Beom Hong
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.384-396
    • /
    • 2023
  • Colletotrichum acutatum species complex is one of the most important groups in the genus Colletotrichum with a high species diversity and a wide range of host plants. C. acutatum and related species have been collected from different plants and locations in Korea and deposited into the Korean Agricultural Culture Collection (KACC), National Institute of Agricultural Sciences since the 1990s. These fungal isolates were previously identified based mainly on morphological characteristics, and a limitation of molecular data was provided. To confirm the identification of species, 64 C. acutatum species complex isolates in KACC were used in this study for DNA sequence analyses of six loci: nuclear ribosomal internal transcribed spacers (ITS), betatubulin 2 (TUB2), histone-3 (HIS3), glyceraldehyde3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and actin (ACT). The molecular analysis revealed that they were identified in six different species of C. fioriniae (24 isolates), C. nymphaeae (21 isolates), C. scovillei (12 isolates), C. chrysanthemi (three isolates), C. lupini (two isolates), and C. godetiae (one isolate), and a novel species candidate. We compared the hosts of KACC isolates with "The List of Plant Diseases in Korea", previous reports in Korea and global reports and found that 23 combinations between hosts and pathogens could be newly reported in Korea after pathogenicity tests, and 12 of these have not been recorded in the world.

Complete Chloroplast Genome assembly and Annotation of Milk Thistle (Silybum marianum) and Phylogenetic Analysis

  • Hwajin Jung;Yedomon Ange Bovys Zoclanclounon;Jeongwoo Lee;Taeho Lee;Jeonggu Kim;Guhwang Park;Keunpyo Lee;Kwanghoon An;Jeehyoung Shim;Joonghyoun Chin;Suyoung Hong
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.210-210
    • /
    • 2022
  • Silybum marianum is an annual or biennial plant from the Asteraceae family. It can grow in low-nutrient soil and drought conditions, making it easy to cultivate. From the seed, a specialized plant metabolite called silymarin (flavonolignan complex) is produced and is known to alleviate the liver from hepatitis and toxins damages. To infer the phylogenetic placement of a Korean milk thistle, we conducted a chloroplast assembly and annotation following by a comparison with existing Chinese reference genome (NC_028027). The chloroplast genome structure was highly similar with an assembly size of 152,642 bp, an 153,202 bp for Korean and Chinese milk thistle respectively. Moreover, there were similarities at the gene level, coding sequence (n = 82), transfer RNA (n = 31) and ribosomal RNA (n = 4). From all coding sequences gene set, the phylogenetic tree inference placed the Korean cultivar into the milk thistle clade; corroborating the expected tree. Moreover, an investigation the tree based only on the ycf1 gene confirmed the same tree; suggesting that ycf1 gene is a potential marker for DNA barcoding and population diversity study in milk thistle genus. Overall, the provided data represents a valuable resource for population genomics and species-centered determination since several species have been reported in the Silybum genus.

  • PDF

꼼치, Liparis tanakae에서 특이하게 발현되는 새로운 유전인자의 검색 (Molecular Cloning of Novel Genes Specifically Expressed in Snailfish, Liparis tanakae)

  • 송인선;이석근;손진기
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권1호
    • /
    • pp.67-77
    • /
    • 2000
  • 심해에서 서식하며 특이한 조직형태를 갖고 있는 꼼치조직에서 cDNA를 제작하여 클로닝을 통해서, 꼼치에서 특이하게 발현하는 유전인자를 검색하였다. 그 결과 62례의 클론이 알려진 유전자에 동질성이 있었는데 이들은 thioesterase가 9례, myosin이 8례, creatine kinase가 7례, skeletal alpha-actin이 6례, parvalbumin b와 ribosomal protein이 각각 5례, type I collagen과 muscle troponin이 각각 3례, dopamine receptor, histatin, 그리고 heat shock protein이 각각 2례, cystatin, lectin, statherin, secretory carrier membrane protein, keratin type I, desmin, chloroplast, muscle tropomyosin, reticulum calcium ATPase, ribonucleoprotein이 각각 1례로 나타났다. 나머지 클론은 동질성이 낮거나 비반복성으로 나타났으며, 이 중 in situ hybridization으로 조직에서 특이하게 발현되는 5종류의 클론을 선택하여 분석하였으며, C 말단 단백질 구조와 특색(motif)을 분석하였다. 5종류의 클론에서 C9O-77은 약 5000bp 크기로 상피조직, 점액조직, 섬유조직 그리고 교원질 조직에서 강한 양성반응을 보이는 세포의 기질단백질로 예상되었다. C9O-116은 약 1500bp 크기로 섬유조직, 상피조직 그리고 점액조직에서 약한 양성반응을 보였고, 근육 다발 주변 부위 세포에서 매우 강한 양성반응을 보이는 막투과성 단백질로 예상되었다. C9O-130은 약 1200bp 크기로 상피조직, 근육조직 그리고 점액조직에서 양성반응을 나타냈으며, 특히 상피조직에서 강한 양성반응을 나타내는 세포내 단백질로 예상되었다. C9O-161은 약 2000bp 크기로 상피조직 과 근육조직 그리고 점액성 섬유조직에서 약한 양성반응을 보였고, 상피세포에서 강한 양성반응을 보였으며, 근육다발을 둘러싸는 섬유성 세포에서도 강한 양성반응을 보이는 세포외 기질단백질로 추측되었다. C9O-171은 약 1000bp크기로 상피조직, 근육조직 그리고 섬유기질 조직에 널리 강한 양성반응을 나타냈으며 교원띠조직에서도 양성반응을 보이는 전사인자로 추측되었다.

  • PDF