• Title/Summary/Keyword: rhyolite

Search Result 122, Processing Time 0.022 seconds

K-Ar Ages for Mesozoic Volcanic Rocks in the Geumdang Island, Jeonam, Korea (전남 금당도지역에 분포하는 중생대 화산암에 대한 K-Ar 연대)

  • Kim, Myung-Gee;Kang, Ji-Won;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • Based on mineral assemblages, field occurrences, the volcanic rocks distributed in the Geumdang Island area are divided into three types: rhyolite, porphyritic rhyolite and intermediated dyke rock. In a diagram of [TAS (total alkali-silica)], rhyolites and porphyritic rhyolites belong to the rhyolite-dacite field and rhyolite field, respectively. As to the times when the rhyolite and porphyritic rhyolite rocks were formed a whole rock K-Ar age was obtained. These absolute age determinations have revealed that the former (rhyolite) has an age of 76-78 Ma and belongs to the Late Cretaceous (Campanian) and the latter (porphyritic rhyolite) is 71-72 Ma in age and thus belongs to the boundary between the Campanian and Maastrichtian. These geological ages are associated with the igneous activity of the Yuchon Group which occurred vigorously in the southern part of the Korean peninsula during the Late Cretaceous. The various geological ages of volcanic rocks distributed in the southwestern part of the peninsula and of igneous rocks found in the Cretaceous formation which contain a wide variety of minerals indicate that in this area, volcanic activities continued vigorously as a result of the collision of the Eurasian and Pacific Plates between 108-71 Ma.

Geology and Ore Deposits of Bupyong Lead-Silver Mine (부평은연광산(富平銀鉛鑛山)의 지질(地質)과 광상(鑛床))

  • Shin, Myeong Sik
    • Economic and Environmental Geology
    • /
    • v.3 no.3
    • /
    • pp.177-186
    • /
    • 1970
  • Bupyong lead-silver mine is located at outskirt of Inchon, a harbor city on the Yellow Sea about 40 km due west of Seoul. The geology of the area is composed of gneisses of pre-Cambrian age, rhyolite of Jurassic to Cretaceous age which extruded over the gneisses and late Cretaceous granite. Small diabasic dike is observed only in the underground. The contact plane between overlying rhyolite and underlain gneiss is sinuous and generally pitches about $30^{\circ}{\sim}40^{\circ}$ toward east. Conjugate joints and fissures are well developed in the rhyolite striking generally north-southward. Three ore bodies are being exploited and three more are under prospecting. These ore bodies range from few tons of hundred thousand to million tons in reserve. These ore bodies occur exclusively in the rhyolite along joints as network and/or desseminated type. The lower limit of ore bodies is always delineated at about 20~30m above the gneiss which might be indicative of ore genesis that has not been clearly explained so far. Two hypothesis on ore genesis could, however, be considered: firstly lithologic difference in the rhyolite might be a manifestation of different flows along which ore solution ascended and replaced along joints; secondly diabasic dike has acted as ore bringer since the dike contains considerable amount of silver, lead and zine. Ore minerals are galena and native silver accompanied by pyrite, argentite, pyragyrite and magnetite. It is believed that pyritization took place in advance to main mineralization, and ore deposit is classified as meso- to epi-thermal type.

  • PDF

Pozzolanic properties of trachyte and rhyolite and their effects on alkali-silica reaction

  • Baki, Vahiddin Alperen;Nayir, Safa;Erdogdu, Sakir;Ustabas, Ilker
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.299-306
    • /
    • 2021
  • The alkali-silica reaction (ASR) is a highly complex chemical reaction which causes damage to concrete and thus adversely affects the durability and service life. Significant damage can occur in concrete structures due to cracking because of the chemical reactions taking place. Various mineral and chemical additives have been used so far to mitigate ASR and/or to reduce its adverse effects. In this study, ground trachyte and rhyolite provided from Rize-Çağrankaya region, Turkey, were used to investigate their effectiveness in controlling ASR-induced damage by substituting them with cement at certain ratios. In this context, initially the possible use of trachyte and rhyolite as pozzolanas was determined in accordance with BS EN 450-1 and TS 25 standards by considering their pozzolanic activities and then their effectiveness in mitigating the ASR was evaluated as per ASTM C 1567-13. In experimental study, blends of trachyte and rhyolite were prepared by substituting them by cement at 25%, 35%, and 50% percentage. Totally 7 mixes were prepared and three samples of 25×25×285 mm mortar bars were prepared from each batch. The length changes of the mortar bars were determined at the end of 3, 7, 14 and 28 days of exposure. SEM, along with XRD analyses were performed to examine and elementally determine the ASR products that have been formed. The results obtained have shown that ground trachyte and rhyolite used in this study can be used as pozzolanas in concrete and they can also significantly mitigate ASR-induced damage as the substitution ratio increases.

The Characteristics of Rock Weathering due to Freeze-Thawing - Focused on Rhyolite, Basalt, Tuff - (동결-융해작용에 따른 암석풍화의 특성 - 유문암, 현무암, 응회암을 중심으로 -)

  • Yang, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.47-65
    • /
    • 2018
  • Frost shattering has traditionally been considered as one of the most effective process in rock weathering. Each slab specimens of five or six rhyolite, basalt and tuff was prepared and put in freeze-thaw cycles and repeated 300 times in the temperature of $-25^{\circ}C$ to $+30^{\circ}C$ and their weathering patterns and products were analyzed by surface observation, particle size, XRD and thin section. As the result, some changes were observed in weathering patterns and weathering products. Rock shattering was more active in waterlogging rather than atmospheric conditions, but there are many differences depending on the type of rock. Rhyolite is hardly weathered by 300 times freeze-thaw cycles and generates the least amount of weathering products. Weathering of Basalt is limited to the surface layer where water can be absorbed, and produces a few amount of platy-shape debris. Tuff are separated by blocky structure which the particles are aggregated along their edges rather than enlarged existing cracks/joins or generated new joints.

Petrlolgy of the Cretaceous Volcanic Rocks in Cheonsungsan Area, Korea. (천성산 백악기 화산암류의 암석학적 연구(1))

  • 김진섭;선종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.108-120
    • /
    • 1996
  • This study reports petrography and geochemical characteristics of the Cretaceous volcanic rocks that are distributed in the vicinity of the Cheonsungsan area, Yangsan-Gun, Gyeongsangnam-Do. The Cretaceous volcanic rocks composed of andesitic rocks, Wonhyosan tuff, Cheonsungsan tuff in ascending order. Sedimentary rock is the basement in the study area cofered with volcanic rocks. These volcanic rocks are Wonhyosan tuff and Cheonsungsan tuff that represented the early phase of the Bulgugsa igneous activity. Wonhyosan tuff are classified into dacite tuff and dacite welded tuff based on the rock texture and their mineral composition. They are covered with Cheonsungsan tuff. Dacite tuff composed of lithic lapilli ash-flow tuff and vitric ash-flow tuff. Most dacite welded tuff are lapilli ash-flow tuff. Cheonsungsan tuff overlying the Wonhyosan tuff consists of rhyolite tuff and rhyolite welded tuff. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic and sedimentary rocks. Rhyolite welded tuff is distinguishe from rhyolite tuff by is typical eelded fabrics and its rock color. According to petrochemical data, the volcanic rocks in study area belong to high-K orogenic suties. On the discriminant diagrams such as La/Yb versus Th/Yb, these rocks falls into the discriminant fields for the normal continental margin arc.

  • PDF

Occurrence and Physico-chemical Properties of the Smectite-rich Clays from the Samcheok Area in Kangwon-do, Korea (강원도 삼척지역의 스멕타이트질 점토의 산상 및 특성)

  • Hwang, Jin-Yeon;Park, Seong-Wan;Lee, Sang-Hyon;Choi, Soo-Yong
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • The smectite-rich clays were found locally in Paleozoic calcareous sedimentary rocks in the Samcheok area. Their occurrences were investigated in detail, and the physico-chemical properties of the clays were also determined by X-ray diffraction, chemical analysis, thermal analysis and cation exchanging experiment. The smectite clays occur as the fissure filling dyke developed in calcareous sedimentary rock and as alteration products of intrusive rhyolite. Most of clays occur at the contact between the sedimentary rock and the rhyolite, and the alteration zone was observed only in rhyolite body close to the contact. Judging from their occurrences, it is believed that the smectite-rich clays in this area were formed by the hydrothemal alteration. The smectite clays from the area are mainly composed of Ca-montmorillonite, and associated with small quantities of quartz, opal-CT and feldspar. The montmorillonites from this area are lower in Fe content, and higher in exchangeable Ca ion, compared to those of bentonite from the Yangnam-Yeongil area.

  • PDF

Mineralogy, Genesis and Potential of a New Tertiary Mineralized Zone in Yeongil Area, Korea (영일지역(迎日地域) 제삼기(第三紀) 신광화대(新鑛化帶)의 광물학적(鑛物學的) 특성(特性), 성인(成因) 및 그 잠재성(潛在性)에 관(關)한 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan
    • Economic and Environmental Geology
    • /
    • v.10 no.2
    • /
    • pp.53-66
    • /
    • 1977
  • Epithermal Mn-Au-Ag deposits of subvolcanic type in the Yeongil area discovered by one (Soo Jin Kim) of the present authors was studied with emphasis on their mineralogy, genesis and future potential. Mineralization is genetically related to volcanic activities of the Tertiary Period, which have produced porphyritic rhyolite, granite porphyry, felsitic rhyolite and agglomerate. Ore deposits are closely associated with felsitic rhyolite. They occur as breccia-filling, veins, or networks. Mineralization is characterized by rhodochrosite-sulfide ores of breccia-type in the central zone, and sulfide ores of disseminated type in the outer zone. Sulfides consist mainly of pyrite and marcasite, with minor chalcopyrite, sphalerite, argentian tetrahedrite, galena and gold in the central zone, and of pyrite, marcasite and argentian tetrahedrite in the outer zone. Sulfides are generally not easily identified with naked eye because of their very fine-grained nature. Wall rock alteration zones are also developed around ore deposits over the large area. Occurrence of ore deposits and the nature of mineralization indicate that the uppermost portion of ore deposits are now exposed on the surface, and therefore, the main mineralized zones are expected in depth.

  • PDF

Hydrothermal Solution-Rhyolite Reaction and Origin of Sericitite in the Yukwang Mine (유문암-열수 반응과 유광 견운모 광상의 성인)

  • Park, Maeng-Eon;Choi, In-Sik;Kim, Jin-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.225-232
    • /
    • 1992
  • The hydrothermal alteration is evaluated using multicomponent equilibrium calculations with the program CHILLER for the reactions between hydrothermal water and rhyolite at the temperature of $300^{\circ}C$ and pressure of 500 bars. The chemical-reaction model on the depositional processes of the sericitite confirms that the hydrothermal water-rock interaction(hydrothermal alteration) is the main mechanism of the sericitite formation. The principal change in the aqueous phase during the reaction is the pH increase. Overall trends for the major species are the increase in total molalities of K, Ca, $SiO_2$, Al, Mg, Fe, Na, and sulfide in solid phase with hydrothermal water-rhyolite reaction and the decrease of them in aqeous solution by precipitation of hydrothermal products. Quartz and sericite are the first minerals to form. The sequence of minerals to precipitate following them is chlorite, epidote, pyrite and microcline as water/rock ratio decreases. Although calculated results cannot duplicate the complexities of natural hydrothermal alteration, the calculation provides thermodynamic constraints on the natural process. The calculation results resemble those of experimental studies. Sericitite forms where pH decreases and water/rock ratio increases.

  • PDF

Geology and Geochemistry of Volcanic and Sedimentary Rocks from Deep Borehole in the Heunghae area, North Kyungsang Province (경북 흥해지역 심부시추공의 화산암 및 퇴적암류의 지질 및 지화학적 연구)

  • Lee, Chang-Bum;Kim, Tong-Kwon;Park, Deok-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.459-474
    • /
    • 2009
  • By the analysis of discontinuity at the outcrop and lineament on the satellite image, the joints have deeply relationship with the lineaments. The joint spaces at the drilling core are mostly 1~20 cm but at the rhyolite which is distributed near fault they have more closely. These volcanic rocks belong to the subalkaline series tuff, rhyolite, basalt in the study area from the diagram of $Nb/Y-Zr/TiO_2$. The composition diagram of Hf/3-Th-Nb/16 show destructive plate-margin basalt and their differentiates. The environment of formation of volcanics are normal continental arc. Most of LREE show high enriched pattern but HREE show depleted pattern. The K/Ar age of intermediate volcanics, tuff, rhyolite, crystal tuff are 55.3Ma, 77.25 Ma~91.22Ma, 63.16~64.39Ma, 54.49 Ma respectively.

Stratigraphic Erection and Orbicular Rocks of the Yeongdo Island, Busan, Korea -With Emphasis on Orbicular-Tuff and-Hornfels- (부산직할시(釜山直轄市) 영도지역(影島地域)의 층서설정(層序設定)과 구상암(球狀岩)에 관(關)한 연구(硏究) -구상(球狀)응회암과 구상(球狀)혼휄스를 중심(中心)으로-)

  • Kim, Haang Mook
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.299-314
    • /
    • 1984
  • The Yeongdo Island in Busan City is a remnant of the latest Cretaceous volcano, and consists geologically of andesites, rhyolite tuff, pelitic and psammitic hornfelses, lapilli rhyodacite tuff of the Yucheon Group, felsite and felsite porphyry of the Bulgugsa intrusives, and Holocene sediments in ascending order. The hornfelses are bound to the Taejongdae Formation. The stratigraphic position of the Formation is determined definitely into the Yucheon Group, thus the geologic age is approximately the same with the volcanic rocks of the Group. The sediments had been thermally metamorphosed to make pelitic and psammitic hornfelses of the albite epidote hornfels facies by the effects of active hydrothermal circulation, vaporization, and hybridization of andesitic solution, or of basification of acidic intrusives. Thus, on occasion, those hornfelses are not used to be distinguished from the andesitic rocks in the southeastern part of the Korean peninsula. The paleocurrent direction determined from several cross-beddings of the Taejongdae Formation is suggested to be from southwest to northeast. Orbicular rocks occur in hornfelsed rhyolite tuff, pelitic- and psammitic-hornfelses, and felsite porphyry at a lot of outcrops in the area of southwestern shoreline of the Yeongdo Island. Orbicules in rhyolite tuff and hornfels in the island might have originated from diffusion processes of metasomatic metamorphism carried out by hydrothermal solution rised from the intrusive adamellite which may be emplaced deeply under the Yeongdo volcanics. Those orbicules are due to metasomatic, secondary, and epigenetic origin. Proto-, multi-shelled, and multi-cored orbicules are described in the orbicular tuff. But multi-cored orbicules are not found in the orbicular fornfels. 250 tuff-orbicules numbered sporadically are in $20,000m^2$ area of the locality of orbicular tuff. About 60 hornfels-orbicules occurred sporadically are in $1,700m^2$ area of the locality of orbicular hornfels in the Taejongdae Formation. Orbicules in felsite porphyry might have originated by diffusion reaction between xenoliths and a quiescent zone in felsite porphyry magma. Those are of igneous, primary, and syngenetic origin.

  • PDF