• Title/Summary/Keyword: rheology characteristics

Search Result 242, Processing Time 0.028 seconds

Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties

  • Urgu, Muge;Turk, Aylin;Unluturk, Sevcan;Kaymak-Ertekin, Figen;Koca, Nurcan
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Fat reduction in the formulation of cheese emulsion causes problems in its flowability and functional characteristics during spray-dried cheese powder production. In order to eliminate these problems, the potential of using microparticulated whey protein (MWP) in cheese emulsions was examined in this study. Reduced-fat white-brined cheese emulsions (RF) with different dry-matters (DM) (15%, 20%, and 25% excluding emulsifying salt) were produced using various MWP concentrations (0%-20% based on cheese DM of emulsion). Their key characteristics were compared to full-fat cheese emulsion (FF). MWP addition had no influence on prevention of the phase separation observed in the instable group (RF 15). The most notable effect of using MWP was a reduction in apparent viscosity of RF which significantly increased by fat reduction. Moreover, increasing the amount of MWP led to a decrease in the values of consistency index and an increase in the values of flow behavior index. On the other hand, using high amounts of MWP made the emulsion more liquid-like compared to full-fat counterpart. MWP utilization also resulted in similar lightness and yellowness parameters in RF as their full-fat counterparts. MWP in RF increased glossiness and flowability scores, while decreased mouth coating scores in sensory analyses. Fat reduction caused a more compact network, while a porous structure similar to FF was observed with MWP addition to RF. In conclusion, MWP showed a good potential for formulation of reduced-fat cheese emulsions with rheological and sensorial characteristics suitable to be used as the feeding liquid in the spray drying process.

The Characteristics and Optimizing Production Conditions of Pasta Prepared with Yam Powder (마분말 첨가 파스타의 품질특성 및 제조조건 최적화)

  • Na, Yu-Ri;Yun, Eun-A;Joo, Na-Mi
    • Korean journal of food and cookery science
    • /
    • v.27 no.6
    • /
    • pp.691-700
    • /
    • 2011
  • This study's objective is to determine the optimum mixing ratio of yam (Dioscorea japonica THUMB) powder and egg for the preparation of pasta. Response surface methodology revealed 10 experimental points, including two replicates for yam powder and egg. Yam pasta formulation was optimized using rheology. Yellowness(p<0.05) and redness displayed a linear model pattern, while lightness was represented by a quadratic model. The texture(p<0.05), including flavor(p<0.05) and overall quality(p<0.05) was measured as a sensory evaluation. In addition, mechanical properties displayed significant values in adhesiveness(p<0.05). These results showed that yam powder affects flavor and appearance, and egg affects adhesiveness and overall quality. The optimum formulations processed by numerical and graphical optimization were determined at 19.50 g of yam powder and 28.07 g of egg.

Introduction of the Advanced Imaging Materials -Micro-encapsulating Treatment of Toner- (최신 화상 재료의 소개 -마이크로 캡슐 토너-)

  • Lee, Yong Kyu;Jeong, Kyoung Mo;Koseki, Ken'ichi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.79-86
    • /
    • 2012
  • The aim of this general remarks is to introduce the results concerning the thermo physical, charging, developing and fusing characteristics of micro-encapsulated (MC) model toners in order to apply to the toner of electrophotographic system at the condition of a low temperature. In order to clarify the fusing mechanism of MC toner, rheological analysis of the toner was chosen. It was suggested that MC toner had a different fusing mechanism compared with non-MC toner. Some kinds of MC model toners showed a good result on adhesion test as well as cohesion test. Also, it was possible to get the good charging and development characteristic of MC toner for printing test with laser printer.

The Antioxidative Characteristics of Opuntia humifusa and its Optimal Conditions for Pasta Production (천년초 분말 첨가 파스타의 품질특성 및 제조조건 최적화)

  • Park, Young Il;Jung, Bok-Mi;Joo, Nami
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.6
    • /
    • pp.710-718
    • /
    • 2012
  • The purpose of this study was to investigate the antioxidative effects of Opuntia humifusa and determine the optimal mixing ratio of Opuntia humifusa powder and eggs for the preparation of pasta. In regard to its antioxidant effects, Opuntia humifusa powder had a total phenolic content and DPPH free radical scavenging activity of 6.64 mg/g and 90.12%, respectively. We used response surface methodology to obtain ten experimental points (including two replicates for Opuntia humifusa powder and egg) and Opuntia humifusa pasta formulation was optimized using rheology. Yellowness (p<0.001) displayed a linear model pattern, whereas lightness (p<0.01) and redness (p<0.01) were described by a quadratic model pattern. Mechanical properties showed significant values in hardness (p<0.5), chewiness (p<0.5), gummiess (p<0.5), and cohesiveness (p<0.5). The sensory evaluation parameters showed significant differences in color (p<0.5), appearance (p<0.5), flavor (p<0.5), texture (p<0.5) and overall quality (p<0.5). The optimum formulations processed by numerical and graphical optimization were found to be 7.30 g of Opuntia humifusa powder and 31.55 g of egg.

Rheological Behavior of Poloxamer 407 Solution and Effect of Poly(ethylene glycol) on the Gelation

  • Lee, Ka-Young;Cho, Cheong-Weon;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • The rheological behavior of poloxamer 407 solution as function of concentration and temperature was evaluated by rotational viscometer. The viscosity of poloxamer 407 solution was increased as the concentration of poloxamer 407 and temperature increased. At $4^{\circ}C$, poloxamer 407 solution showed the Newtonian flow characteristics regardless of concentration. Upon increasing temperature the poloxamer solution changed to the pseudoplastic flow pattern. And at gelation temperature, rheological profiles showed the abrupt increase in viscosity. Gelation temperature was decreased as the concentration of poloxamer 407 increased, while it increased as the concentration of poly(ethylene glycol) 4000 increased. Poly(ethylene glycol) might be expected to reduce the driving force for hydrophobic interaction resulting in slow gelation. From the viscoelastic properties of poloxamer gel system, we obtained the storage and loss modulus depending on the shear stress and frequency. And the sol-gel transition temperature was also obtained from the viscoelastic properties of poloxamer 407 gel.

Characteristics of CIGS film fabricated by non-vacuum process (비 진공으로 제작한 CIGS 박막 특성)

  • Park, Myoung-Guk;Ahn, Se-Jin;Yoon, Jea-Ho;Gwak, Ji-Hye;Kim, Dong-Hwan;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.19-22
    • /
    • 2009
  • A non-vacuum process for fabrication of $CuIn_xGa_{1-x}Se_2$ (CIGS) absorber layer from the corresponing Cu, In, Ga solution precursors was described. Cu, In, Ga precursor solution was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$, $Ga(NO_3)$ and methanol. The Cu, In, Ga precursor solution was mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In, Ga solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CIG/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIGS absorber layer. The CIGS absorber layer selenized at $530^{\circ}C$ substrate temperature for 1h with various metal organic ratio.

  • PDF

Relative Viscosity of Emulsions in Simple Shear Flow: Temperature, Shear Rate, and Interfacial Tension Dependence (전단유동에서 온도, 전단속도, 계면장력 변화에 따른 에멀전의 유변학적 특성)

  • Choi, Se Bin;Lee, Joon Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.677-682
    • /
    • 2015
  • We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

Effect of Fructose on the Quality of the Bread added with Sugar Alcohol (과당 첨가가 당알코올 첨가빵의 품질에 미치는 영향)

  • Kim, Young-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.889-898
    • /
    • 2016
  • This study was to evaluate the characteristics of bread and the rheology of flour dough containing sugar alcohols, after addition of fructose. In the farinogram tests, the addition of sugar alcohol changed the stability and mixing tolerance index. The stability and mixing tolerance index of farinogram increased as the amount of sugar alcohols increased. Amylograms revealed that the increase in gelatinization temperature and maximum viscosity of wheat flour dough with sugar alcohols was more than that of controls. Extensogram of dough with sugar alcohols exhibited higher extensibility and resistance. After fermentation treatment, the dough volumes prepared with only sorbitol and xylitol were lesser than those prepared after addition of fructose. The volume of loaf and specific volume of bread containing sugar alcohols with fructose significantly increased. The breads containing sugar alcohols showed greater taste, flavor and texture scores, for breads prepared with either sorbitol with fructose or xylitol with fructose, compared to breads without fructose. Overall preference scores by sensory evaluation of bread containing sugar alcohols with fructose were higher than bread with only sugar alcohols. These results indicate that the addition of fructose improves the flavor of bread containing sugar alcohols.

Evaluation of Physicochemical Properties of Muffins Made With Ultrafiltered Sunmul Powder

  • Chung, Hai-Jung;Eom, Kwon-Yong;Kim, Woo-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.333-338
    • /
    • 2006
  • This study was conducted to investigate the quality characteristics of muffins with added ultrafiltered (UF) sunmul powder. Muffins were prepared with four different levels of UF powder (0%, 3%, 5% and 7%) and the physicochemical properties were examined. The volume and specific volume were lower in muffins prepared with UF powder than the control. The incorporation of UF powder in muffin lowered the lightness values but increased the redness values. Rheology testing showed that hardness increased with increasing UF powder and gumminess and brittleness were the highest in the control group and decreased with increasing UF powder. Initial isoflavone content was 2.39$\sim$5.57 mg%, and decreased to 1.81$\sim$4.09 mg% after baking, resulting in 24$\sim$37% reduction in muffin formulations. Scanning electron microscopy showed that the size of the air cells increased with increasing UF powder levels. In sensory evaluation, overall acceptability score was the highest in muffins with 3% added UF powder and no significant difference was observed between control and 7% addition. Therefore, muffins prepared with up to 7% addition of UF powder would be at least as acceptable as control muffins.

Large Scale Applications of Nanocellulosic Materials - A Comprehensive Review -

  • Lindstrom, Tom;Naderi, Ali;Wiberg, Anna
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.5-21
    • /
    • 2015
  • The common production methods of nanocellulosic (cellulosic nanofibrils, CNF) materials from wood are being reviewed, together with large scale applications and particularly papermaking applications. The high energy demand for producing CNF has been one particular problem, which has been addressed over the years and can now be considered solved. Another problem was the clogging of homogenizers/microfluidizers, and the different routes to decrease the energy demand. The clogging tendency, related to the flocculation tendency of fibres is discussed in some detail. The most common methods to decrease the energy demand are TEMPO-oxidation, carboxymethylation and mechanical/enzymatic pre-treatments in the order of increased energy demand for delamination. The rheology characteristics of CNF materials, i.e. the high shear viscosity, shear thinning and the thixotropic properties are being illuminated. CNF materials are strength adjuvants that enhance the relative bonded area in paper sheets and, hence increase the sheet density and give an increased strength of the paper, particularly for chemical pulps. At the same time papers obtain a lower light scattering, higher hygroexpansion and decreased air permeability, similar to the effects of beating pulps. The negative effects on drainage by CNF materials must be alleviated through the appropriate use of microparticulate drainage aids. The use of CNF in films and coatings is interesting because CNF films and coatings can provide paper/board with good oxygen barrier properties, particularly at low relative humidities. Some other high volume applications such as concrete, oil recovery applications, automotive body applications and plastic packaging are also briefly discussed.