• Title/Summary/Keyword: rheological phenomena

Search Result 50, Processing Time 0.022 seconds

Instability of Electrically Driven Polymer Liquid Jets

  • Lee Min-Hyung;Kang Seung-Baik;Park Joo-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.409-417
    • /
    • 2006
  • Polymer nanofibers can be generated by a electrospinning process. The process involves electrically charged jet of polymer solutions evolving from a droplet. The jet stretches in vertical direction due to the difference between charged particle and constant current located at the collector, while the Coulomb and viscoelastic forces start to contribute to radial and azimuthal (torsional) stretching. In this paper, the unstable dynamics of the liquid polymer jet is examined experimentally and theoretically. A complex viscoelastic rheological model has been adopted to analyze the behavior of a charged liquid jet. The model includes complex phenomena of stress relaxation of the liquid jet resulting from the competing force components. The experimental data of the jet paths captured by high-speed videocamera also confirm the similar behavior with the predictions.

An Analysis of a Thermo-plastic Melt Flow in the Metering Zone of a Polymer Extruder (고분자 압출기에 있어서 계량부 용융수지의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • Extrusion is one of the most important operations in the polymer-processing industry. Development of models for extrusion and computer tools offer a route to developing reliable and optimized process designs. The models are based on the analysis of physical phenomena encountered during the process. Balance equations for mass, momentum and energy are fundamental to the problem. A predictive computer model has been developed for the single screw extruders with conventional screws of different geometry. The model takes into account melting zones of the extruder and describes an operation of the extruder system, making it possible to predict mass flow rate of the polymer, pressure and velocity profiles along the extruder screw channel. The simulation parameters are the material and rheological properties of the polymer; the screw pitch, and screw speed.

Use of Ultra Fine Cement Particles as Crack Repair Materials (균열주입재로서 초미립자 시멘트의 이용)

  • 이종열;정연식;이웅종;양승규;채재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1205-1210
    • /
    • 2000
  • In this research we made the mean cement particle size 4 $\mu\textrm{m}$ which can penetrate even minor cracks based on the theory of J.K. Michel who reported particles can penetrate the crack of width up to 3 times of maximum particle size. The cement slurries were produced by adding super plasticizer. The slurries were tested with slurry characterization methods and its rheological properties were characterized. The early hydrated phenomena of ultra fine cement were observed by SEM, XRD and DSC during 24 hours. Mechanical properties of hardened slurry with JIS molds were also tested in 3, 7 and 28 days. The cracked specimens which were repaired with slurries produced various conditions were tested after 3, 7 and 28 days curing in the air and adhesion properties were characterized.

Rheological Study on bentonite Clay Sedimentation with various concentrations of Sea water (해수의 농도 변화에 따른 bentonite 침전에 대한 유변학적 고찰)

  • 최상원;서호준
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 1996
  • For studying of coagulation and sedimentation in estuarine clay, we obtained several flow curves with various concentrations of sea water by using Coutte type rotational rheometer. The initial shear stress on high concentration of sea water was observed big, but after this, its value is decreasing with increasing shear rate. The maximum pick of shear stress is decreasing with the decreasing of concentration of sea water The trend is same totally above for viscosity. The sedimentation times with the concentration of sea water vary in $\infty$ ~ 5 minutes. The zeta potential is changed dramatically between 114 and 118 concentration of sea water. That is consistent with the sedimentation graph. From these results, the phenomena of coagulation and sedimentation can be explained with viscoelastic terms on structual formation among particles by the changes of surface potential affected from contacting sea water to dispersed particles.

  • PDF

Solid State Interfacial Phenomena of High Performance Two Phase Polymer System(I) -Preparation and Characteristics of Liquid Crystalline Polyester and Poly(ε-caprolactam) Alloy- (고기능 고분자 복합재의 고상계면 현상에 대한 연구(I) -액정 Polyester와 Poly(ε-caprolactam) Alloy의 제조와 그 특성)

  • Kang, Doo Whan;Kang, Ho Jong;Jung, Hyo Sung;Lee, Yong Moo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • LCP/PA alloy was prepared by blending poly(${\varepsilon}-caprolactam$) (PA) with liquid crystal polyester, Vectra (LCP) having high elasticity and strength. The alloy prepared amorphous PA with more than 10 parts of thermotropic LCP had poor compatibility. To increase the compatibility of the alloy, compatibilizing agent, poly(glycinylmaleimide-co-methylmetacrylate)[poly(GMI-co-MMA)] copolymer was prepared by copolymerizing N-glycinylmaleimide(GMI) with methylmetacrylate(MMA). And then, it was blended with LCP and PA to produce LCP/PA alloy having an excellent compatibility. The compatibility characteristics of the alloy prepared from LCP and PA using the poly(GMI-co-MMA) was determined by measuring the thermal characteristics of glass transition temperature of nematic LCP, and rheological properties, and also high rate impact and flexual characteristics of the alloy were determined.

  • PDF

Studies on Rheological Properties of Rice Plants at the Booting Stage (이삭 밸 때 벼의 리올러지 특성(特性)에 관한 연구(硏究))

  • Hu, Y.K.;Lee, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 1991
  • Rice plants are subjected to various forces such as natural force of wind and mechanical force of cultivating machines. Rheological behavior of the rice stem can be expressed in terms of three variables : stress, relaxation and time. The objectives of this study are to examine stress relaxation, creep and recovery characteristics on the rice stem in case of axial and radial loading. Stress relaxation with time was studied on three levels of loading rate and on four levels of applied stress. The results were summarized as follows : 1. The hysterisis losses of the rice stem distinctly observed at the radial compression in comparison with axial compression. The hysterisis loss implied that the stem to absorbed energy without being deformed beyond the yield point. 2. Ageneralized Maxwell model consisting of three elements gave a good description of the relaxation behavior of the rice stem. Rate of loading was more significant on the observed relaxation behavior within the short relaxation time, but there were little influences of rate of loading on the relaxation time. 3. The stress relaxation intensity and the residual stress increased in magnitude as the applied stress increased, but the relaxation time was little affected by the applied stress. 4. The coefficients of the stress relaxation model showed much differences in the radial compression and the axial compression, especially the higher relaxation stress of the third element was observed in the radial compression. 5. The behaviors of rice stem in creep and recovery test also might be represented by a four element Burger's model. But the coefficients of the creep model were different from those of the recovery model. 6. The steady-state phenomena of creep appeared at the stress larger than 20 MPa in Samkang and 1.8 MPa in Whajin. 7. The elastic modulus of the stem showed the range from 40 to 60 MPa. It could be considered, as a result, the rice stems had viscoelastic properties.

  • PDF

Effect of Surface Treated Magneto-responsible Particle on the Property of Magneto-rheological Elastomer Based on Silicone Rubber

  • Choi, Soyeon;Chung, Kyungho;Kwon, Seunghyuk;Choi, Hyoungjin
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.113-121
    • /
    • 2016
  • Magneto-rheological elastomer (MRE) is a material which shows reversible and various modulus under magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, silicone rubber was used as a matrix of MREs. Carbonyl iron particle (CIP) was used to give magnetic field reactive modulus of MRE. The surface of the CIP was modified with chemical reactants such as silane coupling agent and poly(glycidyl methacrylate), to improve interfacial adhesion between matrix and CIP. The mechanical properties of MREs were measured without the application of magnetic field. The results showed that the tensile strength was decreased while the hardness was increased with the addition of CIP. Also, surface modification of CIP resulted in the improvement of physical properties of MRE, but the degree of orientation of CIP became decreased. The analysis of MR effect was carried out using electromagnetic equipment with various magnetic flux. As the addition of CIP and magnetic flux increased, increment of MR effect was observed. Even though the surface modification of CIP gave positive effect on the mechanical properties of MRE, MR effect was decreased with the surface modification of CIP due to decrease of CIP orientation. Throughout this study, it was found that the loading amounts of CIP affected the mechanical properties of MRE, and surface property of CIP was an important factor on MR effect of MRE.

Electrical and Rheological Behaviors of VGCF/Polyphenylene Sulfide Composites (기상성장 탄소섬유/폴리페닐렌설파이드 복합체 제조 및 전기적$\cdot$유변학적 거동)

  • Noh, Han-Na;Yoon, Ho-Gyu;Kim, Jun-Kyung;Lee, Hyun-Jung;Park, Min
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.85-89
    • /
    • 2006
  • The effect of vapor grown carbon fiber (VGCF) contents on electrical and rheological properties of VGCF filled polyphenylene sulfide (PPS) composites prepared through melt mixing using a twin screw exruder was studied. This method was proved to be quite effective to produce good dispersion of VGCF in the matrix even for highly filled PPS. From the dependence of the electrical conductivity on VGCF content, the percolation phenomena began to occur above $10\;wt\%$. While there is only a marginal increase of viscosity for 1 and $5\;wt\%$ VGCF filled PPS, the composites containing $10\;wt\%$. While VGCF showed abrupt increase in viscosity as well as flattening of frequency vs modulus curve, indicating a transition from a liquid-like to a solid-like behavior due to the creation of VGCF network. This result agrees well to the fact that the network formation in the composite can be composite by rheological property dependence on filler content as well as by electrical conductivity measurement.

Formulation and Evaluation of Glass-Ceramic Ink for Digital Ink-jet Printing (디지털 프린팅용 글래스-세라믹 복합 잉크 제조 및 특성 평가)

  • Kwon, Jong-Woo;Lee, Jong-Heun;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.583-589
    • /
    • 2017
  • Ceramic ink-jet printing has become a widespread technology in ceramic tile and ceramicware industries, due to its capability of manufacturing products on demand with various designs. Generally, thermally stable ceramic inks of digital primary colors(cyan, magenta, yellow, black) are required for ink-jet printing of full color image on ceramic tile. Here, we synthesized an aqueous glass-ceramic ink, which is free of Volatile organic compound(VOC) evolution, and investigated its inkjet printability. $CoAl_2O_4$ inorganic pigment and glass frit were dispersed in aqueous solution, and rheological behavior was optimized. The formulated glass-ceramic ink was suitably jetted as single sphere-shaped droplets without satellite drops. After ink-jet printing and firing processes, the printed glass-ceramic ink pattern on glazed ceramic tile was stably maintained without ink spreading phenomena and showed an improved scratch resistance.

Rheology of Decamethylceclopentasiloxane (cyclomethicone) W/O Emulsion System

  • Choi, Min-Hyung;Jeong, So-Ra;Nam, Sang-In;Shim, Sang-Eun;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.943-949
    • /
    • 2009
  • A highly dispersed W/O emulsion of silicone oil (cyclomethicone)/water system was prepared with a nonionic surfactant. The surface and interfacial tension between the oil and water were characterized in terms of the droplet size distribution and viscosity change of the emulsion. When the dispersed phase concentration was relatively high, the viscosity of the emulsion was rapidly increased and the droplet size of the emulsion was decreased. The rheological behavior of the emulsion system showed non-Newtonian and shear thinning phenomena depending upon the content of the dispersed phase. The droplet size of the emulsion was decreased with increasing surfactant content and water concentration. The relative viscosity of the emulsion was better predicted with the Choi-Schowalter model than with the Taylor model. The value of the complex modulus increased with increasing surfactant concentration. The linear viscoelastic region was expanded with a dispersed phase concentration. According to the change in the viscosity, the behavior was classified into three distinct regions: [I] linear viscoelastic, [II] partially viscoelastic, and [III] viscous. The creep/recovery behaviors in each region were characterized.